ASSOCIATION OF TLR 5 AND ESCHERICHIA COLI FLIC POLYMORPHISMS WITH RECURRENT URINARY TRACT INFECTIONS IN WOMEN

Authors

  • Z. J. Kadhim
  • G. A. Abdulhasan

DOI:

https://doi.org/10.36103/ijas.v54i6.1863

Keywords:

stop codon, flagellin, SNPs, 1174 C>T.

Abstract

This study was aimed to investigate the role of some Toll-like receptor 5 (TLR5) and E. coli fliC gene polymorphisms with increased risk to recurrent urinary tract infections (rUTI). From 180 specimens (blood and urine) were collected from women of different age, 60 of them serve as control while 120 had rUTI symptoms. After culturing of urine specimens, 43 (35.8%) were identified as E. coli isolates. Four SNPs were identified when amplified and sequenced of TLR5 include rs5744168, rs775385356, rs2072493 and rs5744174. Twelve flagellar antigen serotypes were obtained from fliC sequence of 28 isolates. By using Expasy and Clustal Omega programs, the FliC proteins of  H-serotypes arranged in different lengths ranging between 324-634 residues. The N-terminal and C-terminal were conserved region, in contrast, the central region was variable poorly preserved. The results also showed list of conserved amino acids in both FliC termini included L89, Q90,R91, L95, Q98, N101 and E115 in N- terminus in all studied serotypes. Further, the N277 residue  that reported its central role for TLR5 interaction were found in some serotypes. Indeed, it was no distinct relation between genotypes or allele frequencies with fliC polymorphisms found in E. coli isolated from rUTI.

References

Abdulhasan G. A., H.Y. Fadhil and K.A. Jasem. 2015. Detection of genes encoding of extended-spectrum and ampc β-Lactamases in Klebsiella pneumoniae isolates from clinical specimens. Al-Nahrain Journal of Science, 18(2): 125-13

Abed I. J., M. E. Ahmed and S. M.H. AL-Shimmary. 2021. Rosemary volatile oil as a preservative agent in some canned meat foods. Iraqi Journal of Agricultural Sciences, 52(1):155-162. https://doi.org/10.36103/ijas.v52i1.1247

Andrews, C. 2010. The Hardy-Weinberg principle. Nature Education Knowledge 3(10):65

Ahmed, N. A., S. S. Mahmood, and A. H. Abbas. 2019. A comparative study of some virulence factors and phylogenetic charactrization of Escherichia coli isolates causing urinary tract infection and the commensal gut. Iraqi Journal of Agricultural Science, 50(4) : 1193-1198. https://doi.org/10.36103/ijas.v50i4.76

Akter L., R. Haque and M.A. Salam. 2014. Comparative evaluation of chromogenic agar medium and conventional culture system for isolation and presumptive identification of uropathogens. Pakistan Journal Of Medical Sciences, 30(5): 1033

Al-Nassiry M. S., and H.H. Zalzala. 2010. Cephalosporins susceptibility test in urinary tract infection. Iraqi Postgraduate Medical Journal, 9(3): 262-269

Amabebe E., and D.O. Anumba. 2020. Female gut and genital tract microbiota-induced crosstalk and differential effects of short-chain fatty acids on immune sequelae. Frontiers in Immunology, 11: 2184

Aufi, I. M., H. Y., Fadhil, A. W. Ali , F. G. Alhamdani and F. M. Owaid. 2020. Epidemiology of seasonal influenza outbreak among Iraqi population: 2018. Iraqi Journal of Agricultural Science, 51(1), 454-461.‏ https://doi.org/10.36103/ijas.v51i1.944

Cheng C. H., Y.S. Lee, C.J. Chang and T.Y. Lin, 2013. Genetic polymorphisms in toll-like receptors among pediatric patients with renal parenchymal infections of different clinical severities. PloS One, 8(3): e58687

Ciragil P. I. N. A. R., M. Gul, M. Aral and H. Ekerbicer. 2006. Evaluation of a new chromogenic medium for isolation and identification of common urinary tract pathogens. European Journal of Clinical Microbiology and Infectious Diseases, 25(2): 108-111

Demirci F. Y. K., S. Manzi, R. Ramsey-Goldman, M. Kenney, P.S. Shaw, C.M. Dunlop-Thomas and M.I. Kamboh. 2007. Association study of toll-like receptor 5 (TLR5) and toll-like receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus. The Journal Of Rheumatol-ogy

(8): 1708-1711

Elloumi N., R. Fakhfakh O. Abida, L. Ayadi, S. Marzouk, H. Hachicha, and H. Masmoudi. 2017. Relevant genetic polymorphisms and kidney expression of toll‐like receptor (TLR)‐5 and TLR‐9 in lupus nephritis. Clinical and Experimental Immunology, 190(3): 328-339

Fereshteh S., and F. Badmasti .2020. Sequence diversity of FliC protein from enterobacteriaceae family to introducing a promising epitope-delivery platform. Vaccine Research, 7(2): 85-91

Flores-Mireles A. L., J. N. Walker, M. Caparon, and S.J. Hultgren. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 13(5): 269-284

Goda V., M. Jayaraman, R. M. Loganathan. M. Nazeer, A. Ali, P. Karunakaran, and P. Devaraju .2017. TLR5 polymorphisms rs2072493, rs5744174, and rs5744168 are not genetic risk factors for chronic Helicobacter pylori infection in Indian tamils. Immunological Investigations, 46 (6): 537-543

Hajam I. A., P. A. Dar, I. Shahnawaz, J. C. Jaume, and J.H. Lee .2017. Bacterial flagellin—a potent immunomodulatory agent. Experimental & Molecular Medicine, 49(9): e373-e373

Hamzah A. S. 2018. Molecular detection and analysis of mut L gene from Pseudomonas aeruginosa in urinary tract infection patients. Iraqi Journal of Agricultural Sciences 49 (4): 677-684. https://doi.org/10.36103/ijas.v49i4.78

Hawn TR, A. Verbon, KD Lettinga, LP Zhao and SS Li. 2003. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ Disease. J Exp Med, 198: 1563–1572

Hawn T. R., D, Scholes, SS Li, H. Wang, Y. Yang, P. L.Roberts and T.M. Hooton. 2009. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PloS One, 4(6): e5990

Ingle D.J., M. Valcanis, A. Kuzevski, M. Tauschek, M. Inouye, Stinear T. and K.E. Holt. 2016. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O: H serotype combinations within and between pathogenic lineages. Microbial Genomics, 2(7): 1-14

Lei X, J. Palomero, I. de Rink, T. de Wit, M. van Baalen, Y. Xiao and J. Borst. 2021. Flagellin/TLR5 stimulate myeloid progenitors to enter lung tissue and to locally differentiate into macrophages. Front. Immunol. 12:621665. doi: 10.3389/fimmu.2021.621665

Machado J., F. Grimont, and P.A. Grimont. 2000. Identification of Escherichia coli flagellar types by restrictionof the amplified fliC gene. Research in microbiology, 151(7): 535-546

Mohammed Y. J., J. Y. Mustafa, and A. R. Abdullah. 2020. Isolation and molecular study of some bacterial urinary tract infections of sheep in Basrah province. Iraqi Journal of Agricultural Science 51(3): 885-893. https://doi.org/10.36103/ijas.v51i3.1043

Palou, J., J. C. Angulo, F. R. de Fata, A. Garcia-Tello, C. Gonzalez-Enguita, A. Boada and M. Sanz. 2013. Randomized comparative study for the assessment of a new therapeutic schedule of fosfomycin trometamol in postmenopausal women with uncomplicated lower urinary tract infection. Actas Urológicas Españolas, 37(3): 147-155

Prager R., u. Strutz, A. Fruth, and H. Tschäpe. 2003. Subtyping of pathogenic Escherichia coli strains using flagellar (H)-antigens: serotyping versus fliC polymorphisms. International Journal of Medical Microbiology, 292(7-8): 477-486

Reid S. D., R. K Selander and T. S. Whittam. 1999. Sequence diversity of flagellin (fliC) alleles in pathogenic Escherichia coli. Journal of Bacteriology, 181(1): 153-160.

Salah, H. A., H. Y. Fadhil and F. G. Alhamdani. 2020. Multiplex sybr green assay for coronavirus detection using fast real-time rt-pcr. Iraqi Journal of Agricultural Scie-nce, 51(2), 556-564. https://doi.org/10.36103/ijas.v51i2.982

Sampath V, J.S. Garland, M. Le, G.G. Patel AL, Konduri, J.D. Cohen, P.M. Simpson and R.N. Hines. 2012. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr Pulmonol. 47:460-468

Schoenhals G. and C. Whitfield. 1993. Comparative analysis of flagellin sequences from Escherichia coli strains possessing serologically distinct flagellar filaments with a shared complex surface pattern. Journal of Bacteriology, 175(16): 5395-5402

Smith K. D., E. Andersen-Nissen, F. Hayashi, K. Strobe, M.A. Bergman, S. L. R. Barrett and A. Aderem. 2003. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunol-ogy, 4(12): 1247-1253

Song W.S., Y.J. Jeon, B. Namgung, M. Hong and S.I. Yoon. 2017. A conserved TLR5 binding and activation hot spot on flagellin. Scientific reports, 7(1): 1-11

Terlizzi M.E., G. Gribaudo, and M.E. Maffei. 2017. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Frontiers in Microbiology, 8: 1566-1589

Tiba M.R., C.D. Moura, M.F. Carazzolle and D.D.S. Leite. 2011. Identification of putative new Escherichia coli flagellar antigens from human origin using serology, PCR-RFlP and DNA sequencing metho-ds. Brazilian Journal of Infectious Diseases, 15: 144-150

van der Starre W. E., C. van Nieuwkoop, U. Thomson, M.S. Zijderveld-Voshart, J. P. R. Koopman, T.J. van der Reijden and E. van de Vosse. 2015. Urinary proteins, vitamin D and genetic polymorphisms as risk factors for febrile urinary tract infection and relation with bacteremia: a case control study. PLoS One, 10(3): e0121302

Vijayan A., M. Rumbo, C. Carnoy and J.C. Sirard. 2018. Compartmentalized antimicro-bial defenses in response to flagellin. Trends in microbiology, 26(5): 423-435

Wang L., D. Rothemund, H. Curd and P.R. Reeves. 2003. Species-wide variation in the Escherichia coli flagellin (H-antigen) gene. Journal of bacteriology, 185(9): 2936-2943

Wen S. J., F.Y. Wu, L. Fang, H. Liu, W.J. Zheng and Y.K. Lin. 2015. Associations of genetic polymorphisms of TLR5, TLR9 and transduction molecules in MyD88 signaling pathway with systemic lupus erythematosus in Zhuang and Han ethnics of Guangxi province, China. International Journal of Clinical and Experimental Medicine, 8(5): 7872

Yang J and H. Yan. 2017. TLR5: beyond the recognition of flagellin. Cellular & Molecular Immunology. 14(12):1017-9.

Downloads

Published

2023-12-29

Issue

Section

Articles

How to Cite

Z. J. Kadhim, & G. A. Abdulhasan. (2023). ASSOCIATION OF TLR 5 AND ESCHERICHIA COLI FLIC POLYMORPHISMS WITH RECURRENT URINARY TRACT INFECTIONS IN WOMEN. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 54(6), 1636-1646. https://doi.org/10.36103/ijas.v54i6.1863

Similar Articles

21-29 of 29

You may also start an advanced similarity search for this article.