STUDYING THE EFFICIENCY OF SOME NANOPARTICLES ON SOME PLANT PATHOGENIC FUNGI AND THEIR EFFECTS ON HYPHAL MORPHOLOGY

Authors

  • S. A. Masoud
  • A. R. Emara
  • A. S. Mansy

DOI:

https://doi.org/10.36103/ijas.v53i6.1664

Keywords:

Fusarium oxysporum, Fusarium solani, Alternaria solani. Azoxystrobin, iron NPs, clove oil, clove oil NPs, PPO, SEM.

Abstract

This study was investigated the effect of iron NPs and essential oils of clove in normal and nanoemulsion forms for controlling Fusarium oxysporum, Fusarium solani, and Alternaria solani compared with Azoxystrobin fungicide under laboratory conditions. Data revealed that all tested compounds are capable of inhibiting the growth of mycelial of F. oxysporum F. solani, and A. solani from 0 to 84.4%, 0 to 88.9 %, and 0 to 61.1 %, respectively. There is relationship was found between the tested concentration of all treatments and their percentages of inhibition of mycelium. In addition, the use of Azoxystrobin, iron NPs and essential oils of clove in normal and nanoemulsion increased the activity of polyphenol oxidase (PPO). The fungal hyphae morphology was investigated by using scanning electron microscopy (SEM). The fungi hyphae without treatments are regular branching, linearly and normal morphology shaped, the surface of the hyphae is smooth and apical tapered. Treatments caused loss of linearity, irregular branching of the terminal hyphae, deformations of the hyphal shape, and the lysis cytoplasm of the hyphal.

References

Abad, M.J., M. Ansuategui and P. Bermejo, 2007. Active antifungal substances from natural sources. Arkivoc., 7, 116-145

Abdel-Hafez, S. I. I., N. A. Nafady, I. R. Abdel-Rahim, A. M. Shaltout, J. Daro`s and A. M. Mohamed, 2016. Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech, 6:199

Abd-Elsalam, K. A. and A. R. Khokhlov, 2015. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Applied Nanoscience, 5: 255–265

Abu-Tahon, M. A., A. M. ogazy and G.S. Isaac, 2022. Resistance assessment and enzymatic responses of common bean (Phaseolus vulgaris L) against Rhizoctonia solani damping-off in response to seed presoaking in Vitex agnus-castus L. oils and foliar spray with zinc oxide nanoparticles. South African Journal of Botany, 146: 77-89

Ali, E. O., N. A. Shakil, V. S. Rana, D. J. Sarkar, S. Majumder, P. Kaushik, B. B. Singh and J. Kumar, 2017. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Industrial Crops and Products, 108:379-387

Batiha, G. E., L. M. Alkazmi, L. G. Wasef, A. M. Beshbishy, E. H. Nadwa, E. K. Rashwan, 2020. Syzygium aromaticum L. (Myrtaceae): traditional uses, bioactive chemical constituents, phar- mycological and toxicological activities. Biomolecules, 10:202

Benincasa, M., F. Buiarelli, G. P. Cartoni and F. Coccioli, 1990. Analysis of lemon and bergamot essential oils by HPLC with microbore columns. Chromatographia, 30: 271-276

Chee, H. Y. and H. L. Min 2018. Antifungal activity of clove essential oil and its volatile vapor against dermatophytic fungi. Mycobiology, 35(4): 241-243

Ephrem, E., H. Greige-Gerges and H. Fessi, 2014. Charcosset C. Optimisation of rosemary oil encapsulation in polycaprolactone and scale-up of the process. J. Microencapsul. 31:746–753.

Esterbaner, H., E. Schwarzl and M. Hayn, 1977. A rapid assay for catechol oxidase and laccase using 2-nitro-5-thio benzoic acid. Anal. Biochem., (77): 486–494

Filoda, G., 2008. Impact of some fungicides on mycelium growth of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. Pestycydy/Pesticides, 3(4): 109-116

Gupta, S. and P. S. Variyar, 2016. Nanoencapsulation of essential oils for sustained release: Application as therapeutics and antimicrobials, pp. 641–672.

Hayes, W.J. and E. R. Laws, 1991. Handbook of pesticide toxicology, (1) 55-56

Ismail, A. M., 2021. Efficacy of Copper Oxide and Magnesium Oxide Nanoparticles on Controlling Black Scurf Disease on Potato. Egyptian Journal of Phytopathology, 49 (2):116-130.

Kanmani, P. and S. T. Lim, 2013. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug-resistant pathogens. Process Biochem; 48(7):1099–1106

Khan, M. R. and Z. A. Siddiqui, 2021. Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita, and Rhizoctonia solani. Horticulture, Environment, and Biotechnology; 62: 225–241

Kim, Y., R. G. Bernard, B. Yoav and R. Choong-Min, 2012. Enhancement of Plant Drought Tolerance by Microbes. Plant Responses to Drought Stress; 383-413

Koba, K., A. Y. Nenonene, C. Raynaud, J. P. Chaumont and K. Sanda, 2011. Antibacterial Activities of the Buds Essential Oil of Syzygium aromaticum (L.). Journal of Biologically Active Products from Nature; 1: 42-51

Lin, J., D. Gong, S. Zhu, L. Zhang, and L. Zhang, 2011. Expression of PPO and POD genes and contents of polyphenolic compounds in harvested mango fruits about Benzothiadiazole-induced defense against anthracnose. Sci. Hortic.; 130: 85–89

Lucia Galovičová , P. Borotová, V. Valková , H. Ďúranová , P. Ł. Kowalczewski, H. A. H. S. Ahl , W. M. Hikal , M. Vukic , T. Savitskaya , D. Grinshpan, N. L. Vukovic , 2021. Chemical Composition, In Vitro and in vivo Situ Antimicrobial and Antibiofilm Activities of Syzygium aromaticum (Clove) Essential Oil. Plants (Basel). 15, 10(10):2185

Machado, M., A. M. Dinis, L. Salgueiro, J. B. A. Custódio, C. Cavaleiro and M. C. Sousa, 2011. Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol effects on growth, viability, adherence, and ultrastructure. Experimental Parasitology; 127: 32-39

Manikandan, G., and R. Ramasubbu 2021. Biosynthesis of Iron Nanoparticles from Pleurotus florida and its Antimicrobial Activity against Selected Human Pathogens. Indian J Pharm Sci.; 83(1):45-51

Mayer A. M., 2006. Polyphenol oxidases in plants and fungi: Going places? Phytochemistry; 67(21): 2318-2331

Mohamed, Y. M., A. M. Azzam, B. H. Amin and N. A. Safwat, 2015. Mycosynthesis of iron nanoparticles by Alternaria alternate and its antibacterial activity. Academic Journal; 14(4): 1234-1241

Mossa, A. H., M. M. M. Samia, H. E. El-Sayed, S. A. Ziedan, Ibrahim and F. S. Ahmed, 2021. Development of eco-friendly nanoemulsions of some natural oils and evaluating their efficiency against postharvest fruit rot fungi of cucumber. Industrial Crops and Products; 159: 113049

Nandhini, M., S. Rajini, A. Udayashankar, S. Niranjana, O. S. Lund and H. Shetty, 2019. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot.; 121: 103–112

Park, M. J., K. S. Gwak, I. Yang, W.S. Choi, H. J. Jo, J. W. Chang, E. B. Jeung and I. G. Choi, 2007. Antifungal activities of the essential oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their constituents against various dermatophytes. J. Microbiol.; 45: 460-465

Rana I. S.; Aarti S. R. and Ram C. R. (2011). Evaluation of antifungal activity in the essential oil of Syzgium aromatium L. by extraction, purification, and analysis of its main component eugenol. Brazilian Journal of Microbiology; 42: 1269-1277

Sharma, A., K. S. Naveen, S. Ankit, K. Arti, D. Saurabh, S. Satyawati and K. Bishwajit, 2018. Clove and lemongrass oil-based non-ionic nanoemulsion for suppressing the growth of plant pathogenic Fusarium oxysporum f.sp. lycopersici. Industrial Crops and Products; 123: 353-362

Sharma, N., S. Jandaik, S. Kumar, M. Chitkara and I. S. Sandhu, 2016. Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience; 11(1): 54-71

Soffan, A., S. S. Alghamdi and A. S. Aldawood, 2014. Peroxidase and Polyphenol Oxidase Activity in Moderate Resistant and Susceptible Vicia faba Induced by Aphis craccivora (Hemiptera: Aphididae) Infestation. Journal of Insect Science; 14(1): 285

Sunitha, A., R. S. R. Isaac, G. Sweetly, S. S. kshmi, R. Arsula and P. K. Praseetha, 2013. Evaluation of the antimicrobial activity of biosynthesized iron and silver Nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed., 5(1): 39-45

Taisan, W. A., A. H. Bahkali, A. M. Elgorban and M. A. El – Metwally, 2014. Effective influence of essential oils and microelements against Sclerotinia Sclerotiorum. International Journal of Pharmacology, 10 (5): 275 – 281

Thabet, M. and K. Walaa, 2018. Antifungal activities of clove oil against root rot and wilt pathogens of tomato plants. American-Eurasian J. Agric. & Environ. Sci., 18 (3): 105-114

Thakkar, K. N., S. S. Mhatre and R. Y. Parikh, 2010. Biological synthesis of metallic nanoparticles. Nanomedicine, 6(2):257–262

Tomazoni, E. Z., G. F. Pauletti, R. T. S. Ribeiro, S. Moura and J. Schwambach, 2017. In vitro and in vivo activity of essential oils extracted from Eucalyptus staigeriana, Eucalyptus globulus, and Cinnamomum camphora against Alternaria solani Sorauer causing early blight in tomato. Scientia Horticulturae, 223: 72-77.

Villamizar-Gallardo, R., J. F. O. Cruz and O. O. Ortíz-Rodriguez, 2016. Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesq. agropec. bras., Brasília; 51(12): 1929-1936

Winer, B.J. 1971. Statistical Principles in Experimental Design. 2nded. New York: McGraw Hill, USA

Xing, Y., X. Qingliian, L. Xihong, C. Zhenmin and Y. Juan, 2011. Antifungal activities of clove oil against Rhizopus nigicans, Aspergillus flavus, and Penicillium citrinum in vitro and in wounded fruit test. Journal of Food Safety, 32: 84–93

Yahyazadeh M., R. Omidbaigi, Z. R. Rasoul and H. Taheri, 2008. Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World J Microbiol Biotechnol, 24:1445–1450

Yulia, E., 2005. Antifungal activity of plant extracts and oils against fungal pathogens of pepper (Piper nigrum L.), cinnamon (Cinnamomum zeylanicum Blume), and turmeric (Curcuma domestica Val.). M.Sc. (Research) thesis.

Downloads

Published

2022-12-29

Issue

Section

Articles

How to Cite

S. A. Masoud, A. R. Emara, & A. S. Mansy. (2022). STUDYING THE EFFICIENCY OF SOME NANOPARTICLES ON SOME PLANT PATHOGENIC FUNGI AND THEIR EFFECTS ON HYPHAL MORPHOLOGY . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 53(6), 1476-1485. https://doi.org/10.36103/ijas.v53i6.1664

Similar Articles

91-100 of 365

You may also start an advanced similarity search for this article.