EFFECT OF BIOFERTILIZERS ON SOYBEAN GROWTH AND THEIR KEY PEST DENSITIES AS ALTERNATIVE APPROACH TOWARD SUSTAINABLE AGRICULTURE PRODUCTION

Authors

  • Alaa R. Fadel
  • Feryal H. Sadiq
  • Hassan M. Lilo

DOI:

https://doi.org/10.36103/h5ctc923

Keywords:

Bacteria; Mycorrhiza, economic pest, population density,

Abstract

Soybean (Glycine max L.) is one of the most important crops belong to the leguminous family native to East Asia. Chemical fertilizers are widely used to increase production in quantity and quality. As a result of the harmful effects caused by chemical fertilizers, it become necessary to find alternative solutions as sustainable approach toward supply plant by elements needs such as biofertilizers. In this study, Bradyrhizobium japonicum alone or in combination of microorganism inoculation included (B. japonicum, Bacillus subtilis, Glomus mosseae, and Anabaena azollae) were tested toward soybean growth parameters under open field condition. Results showed that there is a significant differences in terms of plant height, vegetative and dry grain of soybean and other parameters with combined inoculation and B. japonicum alone in compare with control treatments. Moreover, key pest larval density were also affected by treatments such as Popillia japonica, Spodoptera littoralis and Agrotis ipsilon. The results suggest the use of specific combination of microorganism is recommended as alternative approaches toward sustainable agriculture production of soybean crop.

References

1. Al-Khafaji, A. M. H. H., and K. D. H. Al-jubouri. 2024. Individual and interactive utility of biological and physical invigoration for various carrots seeds orders and study their field performance. Iraqi Journal of Agricultural Sciences, 55(4) :1566-1573.

https://doi.org/10.36103/66873c67

2. Al-Dulaimi, A.S.T. and W.A., Al-Rawi, 2020. Effects of Biofertilizers and Compost Application on Vegtative Growth of Plum Transplants. Plant Archives, 20(1): 2215-2220.

3. Alkurtany, A.E.S., S.A.M. Ali, and W. M. Mahdi. 2018. The efficiency of prepared biofertilizer from local isolate of Bradyrhizobium sp on growth and yield of mungbean plant. Iraqi journal of agricultural sciences, 49(5):722-730. https://doi.org/10.36103/ijas.v49i5.22

4. Al-Naqeeb, M.A.R., I.H.H., Al-Hilfy, J.H., Hamza, A.S.M. Al-Zubade, and H.M.K., Al-Abodi, 2018. Biofertilizer (EM-1) effect on growth and yield of three bread wheat cultivars. Journal of Central European Agriculture, 19(3):530-543. https://doi.org/10.5513/JCEA01/19.3.2070

5. Al-Obaidi, S.M.J. and H. A. Abdul-Ratha. 2021. Evaluation of the combination of bacterial biofertilizer and vermicompost in the availability of N, P, K and some of plant parameters of beans (Phaseolus vulgaris L.). Iraqi Journal of Agricultural Sciences, 52(4). https://doi.org/10.36103/ijas.v52i4.1406

6. Alomar, M., R. Bayerli, and H., Sharaby, 2023. Effect of biofertilizer (Em1) and seaweed extract (Alga 600) on growth and productivity of strawberry Fragaria× ananassa plant. Iraqi Journal of Science: 5042-5050. https://orcid.org/0000-0003-3732-3826

7. Al-Zubade, A., T., Phillips, M.A., Williams, K. Jacobsen, and D., Van Sanford, 2021. Effect of biofertilizer in organic and conventional systems on growth, yield and baking quality of hard red Winter wheat. Sustainability, 13(24):13861. https://doi.org/10.3390/su132413861

8. Amiry, A.A., J.M. Aziz, and B.M., Iqdaim, 2009. The chemical composition of some kinds of local soybean Glycine max and its utilization in manufacturing supporting cereal baby foods Baghdad Science Journal, 6(1):86-98. https://doi.org/10.21123/bsj.2009.6.1.86-98

9. Ayoola, O.T., 2010. Yield performance of crops and soil chemical changes under fertilizer treatments in a mixed cropping system. African Journal of Biotechnology, 9(26): 4018-4021.

10. Bharathi, V., R., Sudhakar, K. Parimala, and V.A., Reddy, 2013. Evaluation of bioagents and biofertilizers for the managament of seed and seedling diseases of Sesamum indicum (Sesame). International Journal of Phytopathology, 2(3):179-186. https://doi.org/10.33687/phytopath.002.03.0365

11. Bhardwaj, D., M.W., Ansari, R.K. Sahoo, and N., Tuteja, 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories, 13:1-10. https://doi.org/10.1186/1475-2859-13-66

12. Bhat, M.I., S.R.S., Yadav, A. Tahir, and S.A., Bangroo, 2010. Combined effects of Rhizobium and vesicular arbuscular fungi on green gram (Vigna radiata L. Wilczek) under temperate conditions. Indian Journal of Ecology, 37(2):157-161.

13. Boyd, M.L. and W.C., Bailey, 2002. Black cutworm in Missouri (2002).

14. Chen, J.H., 2006, October. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility 16, (20):1-11.

15. Compant, S., B., Duffy, J., Nowak, C. Clément, and E.A., Barka, 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology , 71 (9):4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

16. Dini A, Y., Hafeez Fauzia, Sumera Yasmin, Y. Non Renseigné, Zafar, and A. Kauser Malik. 2006. Plant growth-promoting bacteria as biofertilizer. Agronomy for sustainable development, 26(2), 143-150.

17. Daei, G., M. R., Ardekani, F., Rejali, S. Teimuri, and M., Miransari, 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of plant physiology, 166(6): 617-625. https://doi.org/10.1016/j.jplph.2008.09.013

18. Darzi, M.T., A., Ghalavand, F. Rejali, and F., Sefydkan, 2006. Study of application of biological fertilizers on the yield and yield components of fennel herbs. J. Med. Arom. Plants Res, 22(4): 276-292.

19. Ekin, Z., F., Oguz, M. Erman, and E., Oeguen, 2009. The effect of Bacillus sp. OSU-142 inoculation at various levels of nitrogen fertilization on growth, tuber distribution and yield of potato (Solanum tuberosum L.). African Journal of Biotechnology, 8(18).

20. El Sheek, M.M., M.A. Zayed, and F.K., Elmossel, 2018. Effect of cyanobacteria isolates on rice seeds germination in saline soil. Baghdad Science Journal, 15(1): 0016-0016. https://doi.org/10.21123/bsj.2018.15.1.0016

21. Fattah, A., S., Syam, I.D., Daud, V.S. Dewi, and A., Rahman, 2018. The intensity of leaf damage caused by attack of Spodoptera litura F and seed yield on some soybean varieties in South Sulawesi Indonesia. Scientific Research Journal (SCIRJ), 6(5):55-60.

22. Hall, D.O., S.A., Markov, Y. Watanabe, and K., Krishna Rao, 1995. The potential applications of cyanobacterial photosynthesis for clean technologies. Photosynthesis research, 46:159-167. https://doi.org/10.1007/BF00020426

23. Hart, M. M. and J. A., Forsythe, 2012. Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Scientia Horticulturae, 148:206-214. https://doi.org/10.1016/j.scienta.2012.09.018

24. Hasan, K.U., 2019. Effect of the biofertilizer (Azotobacter chroococcum & Trichoderma harzianum) and levels of phosphate rock on growth and yield of wheat (Triticum aestivum L.). Plant Archives 19 ( 2):4264-4268.

25. Hindersah, R., A. Karuniawan, and A. Apriliana. 2021. Reducing chemical fertilizer in sweet potato cultivation by using mixed biofertilizer. Iraqi Journal of Agricultural Sciences, 52(4):1031-1038. https://doi.org/10.36103/ijas.v52i4.1414

26. Ibiene, Abiye Anthony, Josephine Udunma Agogbua, I. O. Okonko, and G. N. Nwachi. 2012. Plant growth promoting rhizobacteria (PGPR) as biofertilizer: Effect on growth of Lycopersicum esculentus. J Am Sci, 8(2), 318-324.

27. Ibraheem, I., 2007. Cyanobacteria as alternative biological conditioners for bioremediation of barren soil. Egyptian Journal of Phycology, 8(1):99-117. https://doi.org/10.21608/EGYJS.2007.114548

28. Igiehon, N.O. and O.O., Babalola, 2017. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Applied microbiology and biotechnology, 101: 4871-4881. https://doi.org/10.1007/s00253-017-8344-z

29. Ingle, K.P. and D.A., Padole, 2017. Phosphate solubilizing microbes: An overview. International Journal of Current Microbiology and Applied Sciences, 6(1):844-852. http://dx.doi.org/10.20546/ijcmas.2017.601.099

30. Iyer, B., M.S. Rajput, and S., Rajkumar, 2017. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth. Microbiological research, 202:43-50. https://doi.org/10.1016/j.micres.2017.05.005

31. Jat, R.S. and I.P.S., Ahlawat, 2006. Direct and residual effect of vermicompost, biofertilizers and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. Journal of Sustainable Agriculture, 28(1): 41-54. https://doi.org/10.1300/J064v28n01_05

32. Javed, S. and A., Panwar, 2013. Effect of biofertilizer, vermicompost and chemical fertilizer on different biochemical parameters of Glycine max and Vigna mungo. Recent Research in Science and Technology, 5(1): 40-44.

33. Jiménez‐Gómez, A., I., García‐Estévez, P., García‐Fraile, M.T. Escribano‐Bailón, and R., Rivas, 2020. Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer. Journal of the Science of Food and Agriculture, 100(6): 2742-2749. https://doi.org/10.1002/jsfa.10306

34. Joshi, E., B. Iyer, and S., Rajkumar, 2019. Glucose and arabinose dependent mineral phosphate solubilization and its succinate-mediated catabolite repression in Rhizobium sp. RM and RS. Journal of bioscience and bioengineering,128(5): .551-557. https://doi.org/10.1016/j.jbiosc.2019.04.020

35. Kazemi, S., S., Ghaleshi, A. Ghanbari, and G.E., Kianoush, 2005. Effects of planting date and seed inoculation by the bacteria on the yield and yield components of two soybean varieties. Agric. Sci. Nat. Resour, 12(4): 20-26.

36. Kim, Y.H., B. Bae, and Y.K., Choung, 2005. Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. Journal of Biosci-ence and Bioengineering, 99(1):23-29. https://doi.org/10.1263/jbb.99.23

37. Kozieł, M., B.A.R.B.A.R.A. Gębala, and S., Martyniuk, 2013. Response of soybean to seed inoculation with Bradyrhizobium japonicum and with mixed inoculants of B. japonicum and Azotobacter chroococcum. Polish Journal of Microbiology, 62(4):457-460.

38. Lehr, N.A., S.D., Schrey, R. Hampp, and M.T., Tarkka, 2008. Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist, 177(4): 965-976. https://doi.org/10.1111/j.1469-8137.2007.02322.

39. Lindström, K. and S. A., Mousavi, 2020. Effectiveness of nitrogen fixation in rhizobia. Microbial biotechnology, 13(5): 1314-1335.

https://doi.org/10.1111/1751-7915.13517

40. Ming Hung, Wong., S. Wu, Z. H. Cao, Z. G. Cao, Li, and K. C. Cheung. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125(1-2), 155-166.

41. Nazmun, A., M. Rokonuzzaman, and M.N., Hasan, 2009. Effect of Bradyrhizobium and Azotobacter on growth and yield of mungbean varieties. Journal of the Bangladesh Agricultural University, 7(1). https://doi.org/10.22004/ag.econ.208328

42. Ntambo, M.S., I.S., Chilinda, A., Taruvinga, S., Hafeez, T., Anwar, R., Sharif, C. Chambi, and L., Kies, 2017. The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield of soybeans (Glycine max L.). International Journal of Biosciences, 10(3):163-172. https://doi.org/10.12692/ijb/10.3.163-172

43. Olivera, M., C. Iribarne, and C., Lluch, 2002, July. Effect of phosphorus on nodulation and N fixation by bean (Phaseolus vulgaris). In Proceedings of the 15th International Meeting on Microbial Phosphate Solubilization. Salamanca University: 16-19. https://doi.org/10.1093/aob/mcl109

44. Ormeño-Orrillo, E. and E., Martínez-Romero, 2019. A genomotaxonomy view of the Bradyrhizobium genus. Frontiers in Microbiology, 10:450885. https://doi.org/10.3389/fmicb.2019.01334

45. Panhwar, Q.A., S., Jusop, U.A., Naher, R. Othman, and M.I., Razi, 2013. Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/272409

46. Prasad, R.C. and B.N., Prasad, 2001. Cyanobacteria as a source biofertilizer for sustainable agriculture in Nepal. Botanica Orientalis: Journal of Plant Science , 1:127-133. https://doi.org/10.5772/intechopen.109829

47. Raei, Y., M. Sedghi, and R., Seied Sharifi, 2008. Effects of rhizobial inoculation, urea application and weed on growth and seed filling rate in soybean. JWSS-Isfahan University of Technology, 12(43):8-91.

48. Riaz, U., G., Murtaza, W., Anum, T., Samreen, M. Sarfraz, and M.Z., Nazir, 2021. Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. Microbiota and biofertilizers: a sustainable continuum for plant and soil health: 181-196. https://doi.org/10.3390/microorganisms11041088

49. Ribeiro, A.V., T.M., Cira, I.V. MacRae, and R.L., Koch, 2022. Effects of feeding injury from Popillia japonica (Coleoptera: Scarabaeidae) on soybean spectral reflectance and yield. Frontiers in Insect Science, 2: 1006092. https://doi.org/10.3389/finsc.2022.1006092

50. Rosas, S.B., M., Rovera, J.A. Andres, and N.S., Correa, 2007. Effect of phosphorous solubilizing bacteria on the rhizobia-legume simbiosis. In First international meeting on microbial phosphate Solubilization: 125-128. https://doi.org/10.1007/978-1-4020-5765-6_17

51. Sadhana, B., 2014. Arbuscular Mycorrhizal Fungi (AMF) as a biofertilizer-a review. Int. J. Curr. Microbiol. App. Sci, 3(4), pp.384-400.

https://doi.org/10.1007/978-981-19-0733-3_6

52. Shaharoona, B., G.M., Jamro, Z.A., Zahir, M. Arshad, and K.S., Memon, 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-Deaminase for improving growth and yield of wheat (Triticum aestivum I.). Journal of Microbiology and Biotechnology, 17(8):1300.

53. Sharma, S.B., R.Z., Sayyed, M.H. Trivedi, and T.A., Gobi, 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2:1-14. https://doi.org/10.3390/agriculture13020462

54. Singh, J.S., A., Kumar, A.N. Rai, and D.P., Singh, 2016. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology , 7:186282. https://doi.org/10.3389/fmicb.2016.00529

55. Song, T., L., Mårtensson, T., Eriksson, W. Zheng, and U., Rasmussen, 2005. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiology Ecology, 54 (1):131-140.

https://doi.org/10.1016/j.femsec.2005.03.008

56. Stefan, M., S., Dunca, Z., Olteanu, L., Oprica, E., Ungureanu, L., Hritcu, M. Mihasan, and D., Cojocaru, 2010. Soybean (Glycine max [L] Merr.) inoculation with Bacillus pumilus Rs3 promotes plant growth and increases seed protein yield: relevance for environmentally-friendly agricultural applications. Carpathian Journal of Earth and Environmental Sciences, 5(1): 131-138.

57. Ulzen, J., R.C., Abaidoo, N.E., Mensah, C. Masso, and A.H., AbdelGadir, 2016. Bradyrhizobium inoculants enhance grain yields of soybean and cowpea in Northern Ghana. Frontiers in plant science, 7:1770. https://doi.org/10.3389/fpls.2016.01770

58. Yadeghari, M., G.E. Akbari, and J.F., Daneshyan, 2003. Effects of inoculation of four strains of bacteria (Bradyrhizobium japonicum) on yield and yield components of soybean in Karaj climate. Iran J. Field Crop. Res, 1(1): 93-107.

59. Yao, A.V., H., Bochow, S., Karimov, U., Boturov, S. Sanginboy, and A.K., Sharipov, 2006. Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Archives of Phytopathology and Plant Protection, 39(4):.323-328. https://doi.org/10.1080/03235400600655347

60. Yinbo, G., M.B. Peoples, and B., Rerkasem, 1997. The effect of N fertilizer strategy on N2 fixation, growth and yield of vegetable soybean. Field crops research, 51(3): 221-229. https://doi.org/10.1023/A:1015528132642

61. Zarei, I., Y., Sohrabi, G.R., Heidari, A. Jalilian, and K., Mohammadi, 2012. Effects of biofertilizers on grain yield and protein content of two soybean (Glycine max L.) cultivars. African Journal of Biotechnology, 11(27): 7028-7037.

62. Zhang, H., T. C., Charles, B. T., Driscoll, B. Prithiviraj, and D.L., Smith, 2002. Low temperature–tolerant Bradyrhizobium japonicum strains allowing improved soybean yield in short‐season areas. Agronomy Journal, 94(4): 870-875. https://doi.org/10.2134/agronj2002.0870

Downloads

Published

2024-12-29

Issue

Section

Articles

How to Cite

Alaa R. Fadel, Feryal H. Sadiq, & Hassan M. Lilo. (2024). EFFECT OF BIOFERTILIZERS ON SOYBEAN GROWTH AND THEIR KEY PEST DENSITIES AS ALTERNATIVE APPROACH TOWARD SUSTAINABLE AGRICULTURE PRODUCTION. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 55(6), 2128-2138. https://doi.org/10.36103/h5ctc923

Similar Articles

11-20 of 358

You may also start an advanced similarity search for this article.