PERFORMANCE OF FREE WATER SURFACE FLOW CONSTRUCTED WETLAND FOR LEAD AND CADMIUM IONS REMOVAL USING AZOLLA PINNATA PLANT

Authors

  • Huda A. S
  • S. E. Ebrahim

DOI:

https://doi.org/10.36103/60j0b535

Keywords:

heavy metals, Phytoremediation, irrigation water, Azolla Pinnata.

Abstract

Phytoremediation is the ability of some plants to bio accumulate, decompose, or transformation of pollutants in soils, water, or air. In the current study, an effort is made to study the effectiveness of free-floating plants to treat simulated industrial wastewater polluted with Lead and Cadmium ions using Azolla Pinnata plant in a lab condition. Free water surface flow constructed wetland were fed with simulated Cd and Pb ions in different concentrations (5, 10 and 20) mgl-1. Different operating conditions were studied such as; pH, dissolved oxygen, electrical conductivity, temperature, and sodium adsorption ratio to find out the possibility of using treated wastewater for irrigation. Results showed that, Azolla plant had a higher removal efficiency to extract Lead ions (90.1%, 86.67%, and 81.3%) than Cadmium (79.3%, 78.4%, and 69.7%) when the initial concentration is (5, 10, 20) mgl-1 respectively, during 5 days. A slight reducing in pH (8.3 to 7.4) and dissolved oxygen (8.7 to 7.2) mgl-1 observed, all these values mentioned satisfied with the Iraqi standards and World Health Organization. From values of electrical conductivities (250- 750) (µScm-1) and the sodium adsorption ratios (0- 10) it was found that treated wastewater falls into class C2S1 which mean that water has good quality and can be used to irrigate moderately salt-tolerant crops on soils with good permeability.

References

Al-Obaidi, M.A. and Y. K. AL-Timimi. 2022. change detection in mosul dam lake, north of iraq using remote sensing and gis techniques. Iraqi Journal of Agricultural sciences, 53(1):38-47 https://doi.org/10.36103/ijas.v53i1.1506

Arkhawan Jawhar Sharef, R. N. Dara and A. R. Ahmed. 2021. Alana river basin management. Iraqi Journal of Agricultural Sciences, 52(6): 1304-1317. https://doi.org/10.36103/ijas.v52i6.1470

Abdulrazzaq, K. A. and W. S. Kamil. 2010. Construction water suitability maps of Tigris river for irrigation and drinking use. J. Eng. 16: 5822–5841.

Abou-Elela, S. I., G. Golinelli, A. Saad El-Tabl and M. S. Hellal. 2014. Treatment of municipal wastewater using horizontal flow constructed wetlands in Egypt. Water Sci. Technol. 69: 38–47. IWA Publishing.

AL-Obaidi, B. H. K., R. S. Mahmood and R. A. Kadhim. 2020. Water quality assessment and sodium adsorption ratio prediction of Tigris river using artificial neural network. J. Eng. Sci. Technol. 15: 3055–3066.

Al-Shammiri, M., A. Al-Saffar, S. Bohamad and M. Ahmed. 2005. Waste water quality and reuse in irrigation in Kuwait using microfiltration technology in treatment. Desalination 185: 213–225. Elsevier.

Alengebawy, A., S. T. Abdelkhalek, S. R. Qureshi and M.-Q. Wang. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9: 42. MDPI.

Almuktar, S. A., S. N. Abed and M. Scholz. 2018. Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. Environ. Sci. Pollut. Res. 25: 23595–23623. Springer.

Azarpira, H., P. Behdarvand, K. Dhumal and G. Pondhe. 2013. Phytoremediation of municipal wastewater by using aquatic plants. Adv. Environ. Biol. 4649–4655. American-Eurasian Network for Scientific Information.

Ballesteros Jr, F., T. H. Vuong, M. F. Secondes and P. D. Tuan. 2016. Removal efficiencies of constructed wetland and efficacy of plant on treating benzene. Sustain. Environ. Res. 26: 93–96. Elsevier.

Brar, K. K., S. Magdouli, S. Etteieb, M. Zolfaghari, H. Fathollahzadeh, L. Calugaru, S.-P. Komtchou, R. Tanabene and S. K. Brar. 2021. Integrated bioleaching-electrometallurgy for copper recovery-A critical review. J. Clean. Prod. 291: 125257. Elsevier.

Bulgariu, D. and L. Bulgariu. 2012. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresour. Technol. 103: 489–493. Elsevier.

DBT, C. 2019. Manual on constructed wetland as an alternative technology for sewage management in India. Department of Bio Technology (DBT) New Delhi.

Dong, H., Z. Qiang, T. Li, H. Jin and W. Chen. 2012. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. J. Environ. Sci. 24: 596–601. Elsevier.

Ewaid, S. H. 2017. Water quality evaluation of Al-Gharraf river by two water quality indices. Appl. Water Sci. 7: 3759–3765. Springer.

Farooqi, I. H., F. Basheer and R. J. Chaudhari. 2008. Constructed wetland system (CWS) for wastewater treatment. PP. 1009 in Proceedings of Taal2007: The 12th World Lake Conference.

Gharaibeh, M. A., A. A. Albalasmeh, C. Pratt and A. El Hanandeh. 2021. Estimation of exchangeable sodium percentage from sodium adsorption ratio of salt-affected soils using traditional and dilution extracts, saturation percentage, electrical conductivity, and generalized regression neural networks. Catena 205: 105466. Elsevier.

Ghosh, M. and S. P. Singh. 2005. A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Env. 6: 18.

Gupta, U. C., Y. W. Jame, C. A. Campbell, A. J. Leyshon and W. Nicholaichuk. 1985. Boron toxicity and deficiency: a review. Can. J. Soil Sci. 65: 381–409. NRC Research Press Ottawa, Canada.

Indira, D., K. S. Rao, J. Suresh, K. V. Naidu and A. Ravi. 2009. Azolla (Azolla pinnata) as feed supplement in buffalo calves on growth performance. Indian J. Anim. Nutr. 26: 345–348. Animal Nutrition Society of India.

Jayasundara, P. 2022. Wastewater Treatment by Azolla: A review. Diyala Agric. Sci. J. 14: 40–46.

Kosolapov, D. B., P. Kuschk, M. B. Vainshtein, A. V Vatsourina, A. Wiessner, M. Kästner and R. A. Müller. 2004. Microbial processes of heavy metal removal from carbon‐deficient effluents in constructed wetlands. Eng. Life Sci. 4: 403–411. Wiley Online Library.

Kumar, K. N., S. S. Reddy, K. S. Varma and R. M. Reddy. 2009. Assessment of groundwater quality for agriculture in Gajwel, Andhra Pradesh, India. Nat. Environ. Pollut. Technol. 8: 407–416.

M-Ridha,M. J., S. L. Zeki, S. J. Mohammed, K. M. Abed and H. Abu Hasan. 2021. Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland. J. Ecol. Eng. 22: 243–250. Polish Society of Ecological Engineering (PTIE).

Leslie, K. O., M. R. Wick and M. L. Smith. 2017. Practical Pulmonary Pathology: A Diagnostic Approach E-Book: A Volume in the Pattern Recognition Series. Elsevier Health Sciences. pp: 1-811.

Liang, Y., H. Zhu, G. Bañuelos, Y. Xu, B. Yan and X. Cheng. 2019. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag. Environ. Sci. Pollut. Res. 26: 33804–33815. Springer.

M-Ridha, M. J., M. Faeq Ali, A. Hussein Taly, K. M. Abed, S. J. Mohammed, M. H. Muhamad and H. Abu Hasan. 2022. Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics. Water 14: 687.

Ma, H., F. Gao, X. Fan, B. Cui, C. Liu, E. Cui, Z. Zhang, C. Hu and Y. Mo. 2020. Vinasse affects the formation of iron plaque on roots of Acorus calamus and immobilization of lead, cadmium, copper, zinc by this plant. J. Water Process Eng. 38: 101587. Elsevier.

Mahmood, W., A. H. Ismail and M. A. Shareef. 2019. Assessment of potable water quality in Balad city, Iraq. PP. 22002 in IOP conference series: Materials Science and Engineering. IOP Publishing.

Marchand, L., M. Mench, D. L. Jacob and M. L. Otte. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ. Pollut. 158: 3447–3461. Elsevier.

Mayes, W. M., L. C. Batty, P. L. Younger, A. P. Jarvis, M. Kõiv, C. Vohla and U. Mander. 2009. Wetland treatment at extremes of pH: a review. Sci. Total Environ. 407: 3944–3957. Elsevier.

Mohammed, S. J. and M. J. Mohammed-Ridha. 2021. Optimization of Levofloxacin removal from aqueous Solution using electrocoagulation process by response surface methodology. Iraqi J. Agric. Sci. 52: 204–217.

Organization, W. H. 2004. The World health report: 2004: changing history. World Health Organization. pp: 96.

Rechberger, M. V, S. Kloss, S.-L. Wang, J. Lehmann, H. Rennhofer, F. Ottner, K. Wriessnig, G. Daudin, H. Lichtenegger and G. Soja. 2019. Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: what were the driving factors? Chemosphere 216: 463–471. Elsevier.

Reeve, R. C., A. F. Pillsbury and L. V Wilcox. 1955. Reclamation of a saline and high boron soil in the Coachella Valley of California. Hilgardia;(United States) 24. pp: 69-91.

Saidam, M. Y. 2005. A regional overview of wastewater management and reuse in the Eastern Mediterranean Region. Regional CEHA, Cairo, Egypt.

Sekomo, C. B., D. P. L. Rousseau, S. A. Saleh and P. N. L. Lens. 2012. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol. Eng. 44: 102–110.

Skoog, D. A., D. M. West, F. J. Holler and S. R. Crouch. 2013. Fundamentals of analytical chemistry. Cengage learning.

Stepniewska, Z., R. P. Bennicelli, T. I. Balakhina, K. Szajnocha, A. M. Banach and A. Wolinska. 2005. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. 19: 251- 255.

Tamiji, T. and A. Nezamzadeh-Ejhieh. 2018. A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn (IV)-clinoptilolite carbon paste electrode towards Hg (II). J. Electroanal. Chem. 829: 95–105. Elsevier.

Tatawat, R. K. and C. P. Chandel. 2008. A hydrochemical profile for assessing the groundwater quality of Jaipur City. Environ. Monit. Assess. 143: 337–343. Springer.

Tunçsiper, B. 2019. Combined natural wastewater treatment systems for removal of organic matter and phosphorus from polluted streams. J. Clean. Prod. 228: 1368–1376. Elsevier.

Vymazal, J. and L. Kröpfelová. 2008. Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer science & business media. 14: 33-36

Water, M. 2005. Constructed Shallow Lake Systems. Design Guidelines for Developers. Vol 2: 1-20.

Zhang, X., X. Zhou, Y. Xie, X. Rong, Z. Liu, X. Xiao, Z. Liang, S. Jiang, J. Wei and Z. Wu. 2019. A sustainable bio-carrier medium for wastewater treatment: Modified basalt fiber. J. Clean. Prod. 225: 472–480. Elsevier.

Downloads

Published

2024-10-27

Issue

Section

Articles

How to Cite

Huda A. S, & S. E. Ebrahim. (2024). PERFORMANCE OF FREE WATER SURFACE FLOW CONSTRUCTED WETLAND FOR LEAD AND CADMIUM IONS REMOVAL USING AZOLLA PINNATA PLANT . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 55(5), 1756-1765. https://doi.org/10.36103/60j0b535

Publication Dates

Similar Articles

191-200 of 352

You may also start an advanced similarity search for this article.