THE SYNERGISTIC EFFECTS OF LIPOPEPTIDES AND BACTERIOCINS PRODUCED BY Lactobacillus sp. OF HUMAN SAMPLES AGAINST CLINICAL PATHOGENS OF WOUND INFECTION

Authors

  • Z.J. Khaleel
  • Nadhim. H. Haydar

DOI:

https://doi.org/10.36103/y7dmb632

Keywords:

Purification , characterization, biosurfactant, antibacterial, inhibition.

Abstract

This study was performed for production, purification, characterization and evaluation the antibacterial activity of biosurfactant BS which were produced from local isolate Lactobacillus plantarum Z9 with bacteriocin and studying the synergistic effect .A total 100 different samples 85(%) isolates of Lactobacillus sp. were isolated from different sources and identified by biochemical tests then subjected to the primary and secondary screening processes to select the active isolate for bacteriocin and biosurfactant production. Among the vagina isolates screened, the results found that Lactobacillus sp. Z9 isolated from the clinical samples of Iraqi healthy women had the highest productivity of the bacteriocin and biosurfactant. Partial purification of biosurfactant that produced from L. plantarum Z9 was conducted using solvent system (chloroform: methanol, 2:1). A 1:1 ratio of n-butanol was used to extract of partially purified bacteriocin, where the bacteriocin activity up to 320 AU/ml against both Staphylococcus aureus and Pseudomonas aeruginosa respectively compared to 20 AU/ml before purification.. Antibacterial activity of Bacteriocin displayed a significant activity with inhibition zones diameter ranged from (11 to 26 mm) and (10 to 25  mm) against P. aeruginosa and S. aureus at concentration ranged from 50 to 200 mg/ml. Maximum antibacterial activity of bacteriocin against P. aeruginosa and S. aureus showed at concentration 200 mg/ml of bacteriocin. Partial purified lipopeptide of L. plantarum Z9 was examined against pathogenic bacteria using well diffusion method. The lipopeptide had inhibition zones diameter ranged from (14 to 28 mm) and (13 to 29 mm) against P. aeruginosa and S. aureus respectively at concentration ranged from 25 to 200 mg/ml. The combination of lipopeptide with bacteriocin increased the range of inhibition zones and made the pathogens sensitive.

References

Abd, F. N., and K., Luti, 2017. An Exploitation of Interspecies Interaction for Promoting Bacteriocin Production by Local Isolate of Bacillus sp. Ph.D. dissertation, Department of Biotechnology, College of science, University of Baghdad).‏

Abo-Amer, A. E., 2007. Characterization of a bacteriocin-like inhibitory substance produced by Lactobacillus plantarum isolated from Egyptian home-made yogurt. Sci. Asia, 33(3), 313-319.‏ https://10.2306/scienceasia1513-1874.2007.33.313.

Aleaa A. J and H. H. Nadium, 2020. Production, Characterization and Assessment of Biological Activity of Lipopeptide Produced by Clinical Lactobacillus Plantarum. M.Sc. thesis. Collage of Science, University of Baghdad. pp: 169-180.

Balouiri, M., M., Sadiki, and S. K., Ibnsouda, 2016. Methods for in vitro evaluating antimicrobial activity: a review. Journal pharmaceutical analysis, 6(2), 71-79.‏ https://10.1016/j.jpha.2015.11.005.

Chikindas, M. L., R., Weeks, D., Drider, V. A., Chistyakov, and L. M., Dicks, 2018. Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, 23-28.‏ https://10.1016/j.copbio.2017.07.011.

Daba, H., S., Pandian, J. F., Gosselin, R. E., Simard, J., Huang, and C. Lacroix, 1991. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Applied and Environmental Microbiology, 57(12), 3450-3455. ‏ https://10.1128/aem.57.12.3450-3455.1991.

De Man, J. C., D. Rogosa and M. E., Sharpe, 1960. A medium for the cultivation of lactobacilli. Journal of applied Bacteriology, 23(1), 130-135. https://10.1111/j.1365-2672.1960.tb00188.x.

Elemba O. and U. Ijah, 2015. Isolation, characterization and Meor ability of The biosurfactant produced from Serratia marcescens UEO15. Vol-2, Issue-6 PP: 962-974.

Elsharawy H.S.; I. Aiad; M.E. Osman; A.A. Abo-Elnasr and A.S. Kobisy, 2015. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egyptian Journal of Petroleum. 24(2): 155-162. https://doi.org/10.1016/j.ejpe.2015.05.005.

Enan, G., 2006. Nature and phenotypic characterization of plantaricin UG1 resistance in Listeria monocytogenes LMG 10470. J. Food Agriculture and Environment, 4(1):105-108. https://10.4315/0362-028X-54.11.836.

Erum S.; B. Uzma; A. Jameela; A. A. Faiza; W. Maheen and A. A. Maqsood, 2012. Screening of surfactant producing bacterial strains isolated from soil samples of an automobile workshop, Karachi University Journal of Science, 40: 31-36.

Fair, R.J. and Y. Tor, 2014. Antibiotic and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry. 6: 25-64. https://10.4137/PMC.S14459.

Falagas ME. and G. C. Makris, 2009. Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. J Hospital Inf 71(4):301–306. https://10.1016/j.jhin.2008.12.008.

Grover M.; L. Nain; S B. Singh; A. K. Saxena, 2010. Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Current Microbiology. 60: (2) 99–106. https://10.1007/s00284-009-9508-6.

Gudina E.J.; J.A. Teixeira ; and L.R. Rodrigues, 2011. Biosurfactant- producing lactobacilli: screening, production profiles, and effect of medium composition. Appl. Environ. Soil Sci. 2011: 1–9. https://doi.org/10.1155/2011/201254

Gutmann R. ; R. Williamson and E. Collatz, 1984. The possible role of porins in bacterial antibiotic resistance. Annals of Internal Medicine. 101(4) 554-557. https://10.3389/fmicb.2019.00953.

Hiba T. R. and K. Luti, 2020. A probiotic application of Lactobacillus acidophilus HT1 for the treatment of some skin pathogens. Iraq J Agri Sci. 51(6):1559-1571. https://10.36103/ijas.v51i6.1183.

Hussein, N.A. and K. J. Luti, 2023. In Vitro antimicrobial activity of Lactobacillus parabuchneri NU14 as a probiotic. Iraqi J Agri Sci., 54(6): 1647-1658. https://doi.org/10.36103/ijas.v54i6.1864

Jushi-Navare, K. and A. Prabhune, 2013. A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BioMed Research International. 512495: 1-8.

Kandler, O. and N., Weiss, 1986. Genus Lactobacillus. In: Bergey's manual of systematic bacteriology, Vol. 2. (edited by Sneath, P.H. A.; Mair, N.S. and Hold, J.G. ), William and Wilkins Co., Baltimore, USA. pp: 264-269

Lozano, J. C. N., J. N. Meyer , K. Sletten, C., Peláz, and I. F. Nes, 1992. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. Microbiology, 138(9), 1985-1990

Lv, X.; L. Miao; H. Ma; F. Bai; Y. Lin; M. Sun, and J. Li, 2018. Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine. Food Science and Biotechnology, 27(3): 695–703

MacFaddin, J.F., 2000. Biochemical tests for identification of medical bacteria third ed. Williams and Wilkins, Washington pp:912

Mataragas, M., J. Metaxopoulos, M. Galiotou and E. H. Drosinos, 2003. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Science, 64(3), 265-271.‏ https://10.1016/S0309-1740(02)00188-2.

Mayr-Haeting, A., ; A.J. Hedges and C.W. Berkeley,1972. Methods for studying bacteriocin. Methods in Microbiol.J., 7:315-412.

https://doi.org/10.1016/S0580-9517(08)70618-4.

Messi, P.; M. Bondi; C. Sabia; R. Battini and G. Manicardi, 2001. Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int. J. Food Microbiol., 64(1-2): 193–198.

https://10.1016/s0168-1605(00)00419-0.

Mortvedt, C. I., J. Nissen-Meyer, K. Sletten, and I. F. Nes, 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Applied and Environmental Microbiology, 57(6), 1829-1834.‏ https://10.1128/aem.57.6.1829-1834.1991.

Madhu, A. N., and S. G. Prapulla, 2014. Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Applied Biochemistry and Biotechnology, 172(4), 1777-1789.‏ https://10.0.3.239/s12010-013-0649-5.

Nissen-Meyer, J., and I. F. Nes, 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Archives of microbiology, 167(2), 67-77.‏ https://10.1007/s002030050418.

Okpara, A.; B. Okolo and J. Ugwuanyi, 2014. Antimicrobial activities of lactic acid bacteria isolated from akamu and kunun-zaki (cereal based non-alcoholic beverages) in Nigeria. Afr. J. Biotech., 13(29): 2977-2984. https://10.5897/AJB12.376.

Powell, J.; R. Witthuhn; S. Todorov and L. Dicks, 2007. Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int. Dairy J., 17:190 – 198. https://doi.org/10.1016/j.idairyj.2006.02.012.

Santagati, M., M., Scillato, F., Patanè, C., Aiello and S. Stefani, 2012. Bacteriocin-producing oral streptococci and inhibition of respiratory pathogens. FEMS Immunology and Medical Microbiology, 65(1), 23-31.‏ https://10.0.4.87/j.1574-695X.2012.00928.x.

Saravanakumari P. and K. Mani, 2010. Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresource Technol 101(22):8851–8854. https://10.0.3.248/j.biortech.2010.06.104.

Satpute, S. K., G. R., Kulkarni, A. G., Banpurkar, I. M., Banat, N. S., Mone, R. H., Patil, and S. S. Cameotra, 2016. Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. Journal of Basic Microbiology, 56(11), 1140-1158.‏ https://10.1002/jobm.201600143.

Tahmourespour A., R., Salehi RK., Kermanshahi, G. Eslami, 2011. The anti-biofouling effect of Lactobacillus fermentum-derived biosurfactant against Streptococcus mutans. Biofouling 27(4):385–392. https://10.1080/08927014.2011.575458.

Lei, S., R., Zhao, J., Sun, J., Ran, X., Ruan, and Y. Zhu, 2020. Partial purification and characterization of a broad‐spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant's feces. Food Science and Nutrition, 8(5), 2214-2222.‏ https://10.1002/fsn3.1428.

Schippers C.; K. Gessner; T. Müller ; T. Scheper, 2000. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J Biotechnol 83(3):189–198. https://doi.org/10.1016/S0168-1656(00)00304-7

Sifour, M.; Al-Jilawi, M. H. and G. M., Aziz, 2007. Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28. Pakistan Journal of Biological Sciences. 10 (8): 1331 – 1335. https://10.3923/pjbs.2007.1331.1335.

Singh R. P.; M. K. Shukla; A. Mishra; P. Kumari; C. R. Reddy and B. Jha, 2011a. Isolation and characterization of exopolysaccharides from seaweed associated bacteria B. licheniformis. Carbohydrate Polymers. 84(3):1019–1026. https://doi.org/10.1016/j.carbpol.2010.12.061

Singh, M.K., R. Singla, A. Singh, M. Ghosh, and A. Ganguli, 2012. Survival of probiotic strains in non-dairy indian spice condiment exhibiting cholesterol reducing properties. Food Sci. Biotechnol. 21, 1309–1315. https://10.1007/s10068-012-0172-4.

Tagg, J. R., A. S., Dajani, and L. W. Wannamaker, 1976. Bacteriocins of gram-positivebacteria. Bacteriological reviews, 40(3), 722-756.‏ https://10.1128/mr.59.2.171-200.1995.

Tahzibi, A.; F. Kamal, and M. M. Assadi, 2004. Improved production of Rhamnolipids by a Pseudomonas aeruginosa mutant. Iranian Biomedical Journal. 8 (1): 25 – 31.

Thakur, M.; H. W. Deshpande, and M. A. Bhate, 2017. Isolation and identification of lactic acid bacteria and their exploration in non-dairy probiotic drink. Int. J. Curr. Microbiol. App. Sci., 6(4): 1023-1030. https://10.20546/ijcmas.2017.604.127.

Thavasi R.; S. Jayalakshmi; T. Balasubramanian; I.M. Banat, 2008. Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources, World J. Microbiol. Biotechnol. 24 (7): 917–925. https://10.1007/s11274-007-9609-y.

Velraeds M.M.C.; H.C. van der Mei; G. Reid; H.J. Busscher, 1996. Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Coll. Surf. B, 8: 51–61. https://doi.org/10.1016/S0927-7765(96)01297-0

Vos, P., G. Garrity, D., Jones, N. R., Krieg, W., Ludwig, F. A., Rainey and W. B., Whitman, 2011. Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes Springer Science and Business Media. https://10.1007/978-0-387-68489-5.

Yalçin E. and A. Ergene, 2009. Screening the antimicrobial activity of biosurfactants produced by microorganisms isolated from refinery waste waters. Journal of Applied Biological Sciences. 3 (2): 148 – 153

Yassin, H.Y., A.K. Melconian, and S.S., Mahmood, 2022. Prevalence of exfoliative toxin genes among clinical isolates of Staphylococcus aureus in Iraq. Iraqi Journal of Agricultural Sciences, 53(2):465-470. https://doi.org/10.36103/ijas.v53i2.1554

Yonis, R.W., K.J. Luti, and G.M., Aziz, 2019. Statistical optimization of chitin bioconversion to produce an effective chitosan in solid state fermentation by Aspergillus flavus. Iraqi Journal of Agricultural Sciences, 50(3):916-927. https://doi.org/10.36103/ijas.v50i3.708

Zacharof, M. P., and R. W. Lovitt, 2012. Bacteriocins produced by lactic acid bacteria a review article. Apcbee Procedia, 2, 50-56.‏ https://doi.org/10.1016/j.apcbee.2012.06.010

Zamfir, M., R. Callewaert, P. C. Cornea, L. Savu, I. Vatafu, and L. De Vuyst, 1999. Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB 801. Journal of Applied Microbiology, 87(6), 923-931.

https://doi.org/10.1046/j.1365-2672.1999.00950.x

Zheng C.; J. He; Y. Wang; M. Wang and Z. Huang, 2011. Hydrocarbon degradation and bioemulsifier production by thermophilic G. pallidus strains. Bioresource Technology. 102:9155- 9161.

https://doi.org/10.1016/j.biortech.2011.06.074

Downloads

Published

2024-06-26

Issue

Section

Articles

How to Cite

Z.J. Khaleel, & Nadhim. H. Haydar. (2024). THE SYNERGISTIC EFFECTS OF LIPOPEPTIDES AND BACTERIOCINS PRODUCED BY Lactobacillus sp. OF HUMAN SAMPLES AGAINST CLINICAL PATHOGENS OF WOUND INFECTION. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 55(3), 1098-1109. https://doi.org/10.36103/y7dmb632

Similar Articles

81-90 of 139

You may also start an advanced similarity search for this article.