EFFECT OF GLYCEROL ON PERFORMANCE AND SOME BLOOD CHARACTERISTICS OF HOLSTEIN CALVES

Authors

  • W. A. Khalid
  • N. N. Al-Anbari

DOI:

https://doi.org/10.36103/731zw966

Keywords:

glycerol, holstein calves, weight and measurements body, NEFA, BHBA.

Abstract

This research was to study the effect of adding glycerol at different levels (T1 = control treatment without glycerol, T2 = 75 ml and T3 = 150 ml glycerol) in the body weight, body measurements and some blood characteristics of Holstein calves from 60 to 120 days of calves age. Body weight increased  (P≤0.05) in T3 calves at 80 and 100 days of age, also body weight increased in T2 and T3 calves at 120 days of age. T2 calves were significantly superior (P≤0.01) in average total gains from 60 to 120 days of age. Significantly increased (P≤0.05) at the ages of 100 and 120 days of: Wither height in T3 calves, Body length in T2 calves and Heart girth in T2 and T3 calves. Blood glucose concentration increased (P≤0.05) and blood NEFA concentration decreased (P≤0.01) in T2 calves at 80 days of age. At the age of 100 and 120 days, the concentration of blood glucose was increased (P≤0.01 and P≤0.05) and the concentration of NEFA and BHBA decreased (P≤0.01) in calves of the two treatments T2 and T3. We conclude that the addition of glycerol (75 and 150 ml/day) in the feeding of calves increases body weight, promotes growth and improves blood characteristics by increasing blood glucose and reducing NEFA and BHBA concentrations.

References

Abdullah, A. M., and G. G. H. F. Al-Taye. 2020. An economical study to measurement of marketing efficiency in calf fattening fields in Nineveh governorate. Iraqi Journal of Agricultural Science, 51(4), 1128-1138.‏ https://doi.org/10.36103/ijas.v51i4.1092

Al-Kudsi, N. H., and Khalid, W. A., 2018. Association of Lactoferrin with some immunological and blood traits of Holstein calves in the middle of Iraq. Journal of Research in Ecology, 6(2): 1778-1787. http://ecologyresearch.info/documents/EC0573.pdf

Al Mazroea, A., M. A. Alharby, A. A. Almughathwai, S. Majed, R. M. Al-Remaithi, A. F. Alharbi, and H. M. Saeed. 2018. Comparison between nutritional values in cow’s milk, and goat milk infant formulas. International Journal of Pharmaceutical Research and Allied Sciences, 7(4), 190-4. 10.3402/fnr.v%25v.28613

Allain, C. C., L. S. Poon, C. S. Chan, W. F. P. C. Richmond, and P. C. Fu. 1974. Enzymatic determination of total serum cholesterol. Clinical chemistry, 20(4), 470-475.https://doi.org/10.1093/clinchem/20.4.470

Anan, T., K. Kikuchi, T. Ichijo, K.Okada, and S. Sato. 2016. Effects of glycerol administration on the energy status and debility in calves. Japanese Journal of Large Animal Clinics, 6(4), 154-160. https://doi.org/10.4190/jjlac.6.154

Bakr, M. 2020. Citrus pulp as an innovative feed ingredient in ruminant nutrition. A review. Egyptian Journal of Animal Production, 57(Suppl. Issue), 73-80.‏10.21608/EJAP.2020.98258

Barros, A. C. B., J. N. M. Neiva, J. Restle, R. L. Missio, F. R. C. Miotto, D. A. G. Elejalde, and R. P. Maciel. 2017. Production responses in young bulls fed glycerin as a replacement for concentrates in feedlot diets. Animal Production Science, 58(5), 856-861.‏ 10.1071/AN16288

Bodarski, R., T. Wertelecki, F. Bommer, and S. Gosiewski. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding TMR with glycerin [glycerol] supplement at periparturient period. Electronic Journal of Polish Agricultural Universities. Series Animal Husbandry, 4(08). http://www.ejpau.media.pl/volume8/issue4/art-22.html

Burakowska, K., P. Gorka, C. Kent-Dennis, Z. M. Kowalski, B. Laarveld, and G. B. Penner. 2020. Effect of heat-treated canola meal and glycerol inclusion on performance and gastrointestinal development of Holstein calves. Journal of Dairy Science, 103(9), 7998-8019.‏https://doi.org/10.3168/jds.2019-18133

Chalmeh, A., M. Pourjafar, S. Nazifi, F. Momenifar, and M. Mohamadi. 2016. Relationships among circulating metabolic biomarkers in healthy high-producing Holstein dairy cows in different physiological states. Bulgarian Journal of Veterinary Medicine, 19(4).‏ 10.15547/bjvm.898

DeVries, G. H., P. Mamunes, C. D. Miller, and D. M. Hayward. 1976. Quantitative determination of C6: 0-C18: 3 serum nonesterified fatty acids by gas-liquid chromatography. Analytical biochemistry, 70(1),156-166.10.1016/s0003-2697(76)80057-7

Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Braz. J. Anim. Sci. SE. 37, 280–286.10.1590/S1516-35982008001300032

Drackley, J. K. 2008. Calf nutrition from birth to breeding. Veterinary clinics of North America: Food animal practice, 24(1), 55-86.‏ https://doi.org/10.1016/j.cvfa.2008.01.001

Duncan, D.B. 1955. Multiple Rang and Multiple F-test. Biometrics. 11.https://doi.org/10.2307/3001478

Eidan, S. M., and Khudhir, S. A. 2023. Association between ATP1A1 gene polymorphisms with semen characteristics in Holstein bulls. Iraqi Journal of Agricultural Sciences, 54(2), 330-337. ‏ https://doi.org/10.36103/ijas.v54i2.1706

Fossati, P., and L. Prencipe. 1982. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical chemistry, 28(10), 2077-2080. https://doi.org/10.1093/clinchem/28.10.2077

Gunn, P. J., R. P. Lemenager, D. R. Buckmaster, M. C. Claeys, and S. L. Lake. 2011. Effects of dried distillers grains with solubles and crude glycerin on performance, carcass characteristics, and metabolic parameters of early weaned beef calves. The Professional Animal Scientist, 27(4), 283-294. https://doi.org/10.15232/S1080-7446(15)30491-5

Guo, C., Y. Xue, Y. Yin, D. Sun, H. Xuan, J. Liu, and S. Mao. 2020. The effect of glycerol or rumen-protected choline chloride on rumen fermentation and blood metabolome in pregnant ewes suffering from negative energy balance. Animal Feed Science and Technology, 268, 114594.‏https://doi.org/10.1016/j.anifeedsci.2020.114594

Hidayet, H. M., and K. N. Mustafa. 2021. Effect of feeding oak (Quercus Aegilops) acorns on milk production, milk composition and some blood biochemical parameters of black goats. Iraqi Journal of Agricultural Sciences, 52(1), 28-35.‏ https://doi.org/10.36103/ijas.v52i1.1233

mIzzadeen, S. I. 2022. Effect of body condition score on milk yield and composition of bokani dairy cows. Iraqi Journal of Agricultural Sciences, 53(2), 373-377. ‏https://doi.org/10.36103/ijas.v53i2.1544

Kalyesubula M, Rosov A, Alon T, Moallem U, Dvir H. Intravenous Infusions of Glycerol Versus Propylene Glycol for the Regulation of Negative Energy Balance in Sheep: A Randomized Trial. Animals. 2019; 9(10):731. https://doi.org/10.3390/ani9100731

Khalid, W. A., and N. H. Al-Kudsi, 2018. Effect of lactoferrin on growth of Holstein calves in the middle of Iraq. Journal of Research in Ecology, 6(2), 1788-1793. http://ecologyresearch.info/documents/EC0568.pdf

Khalid, W. A., and Al-Anbari, N. N. 2023. Effect of glycerol on milk yield, its quality and blood parameters of Holstein cows. Iraqi Journal Of Agricultural Sciences, 54(6), 1520-1528.‏ https://doi.org/10.36103/ijas.v54i6.1851

Kholif, A. E. 2019. Glycerol use in dairy diets: A systemic review. Animal Nutrition, 5(3), 209-216. https://doi.org/10.1016/j.aninu.2019.06.002

Kupczynski, R., A. Szumny, K. Wujcikowska, and N.Pachura. 2020. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8), 1379.10.3390/ani10081379

Le Cozler, Y., C. Allain, C. Xavier, L. Depuille, A. Caillot, J. M. Delouard, and P.Faverdin. 2019. Volume and surface area of Holstein dairy cows calculated from complete 3D shapes acquired using a high-precision scanning system: Interest for body weight estimation. Computers and Electronics in Agriculture, 165, 104977.‏ https://doi.org/10.1016/j.compag.2019.104977

Lee, S. Y., S. M. Lee, Y. B. Cho, D. K. Kam, S. C. Lee, C. H. Kim, and S.Seo. 2011. Glycerol as a feed supplement for ruminants: In vitro fermentation characteristics and methane production. Animal Feed Science and Technology, 166, 269-274.https://doi.org/10.1016/j.anifeedsci.2011.04.070

Lopreiato, V., M. Vailati-Riboni, V. M. Morittu, D. Britti, F. Piccioli-Cappelli, E. Trevisi, and A.Minuti. 2020. Post-weaning rumen fermentation of Simmental calves in response to weaning age and relationship with rumination time measured by the Hr-Tag rumination-monitoring system. Livestock Science, 232, 103918. https://doi.org/10.1016/j.livsci.2020.103918

Maciel, R. P., J. N. M. Neiva, J. Restle, U. O. Bilego, F. R. C. Miotto, A. J. Fontes, and R. A. D. Oliveira. 2016. Performance, rumen development, and carcass traits of male calves fed starter concentrate with crude glycerin. Revista Brasileira de Zootecnia, 45, 309-318.‏ https://doi.org/10.1590/S1806-92902016000600005

Maciel, R. P., J. Restle, R. L. Missio, U. O. Bilego, M. S. Cunha, L. F. Sousa, and J. N. M. Neiva. 2020. Crude glycerin in corn grain-based diets for dairy calves. Revista Brasileira de Zootecnia, 49.‏ https://doi.org/10.37496/rbz4920180166

Martineau, R., C. Benchaar, H. V. Petit, H. Lapierre, D. R. Ouellet, D. Pellerin, and R. Berthiaume. 2007. Effects of lasalocid or monensin supplementation on digestion, ruminal fermentation, blood metabolites, and milk production of lactating dairy cows. Journal of Dairy Science, 90(12), 5714-5725.‏ https://doi.org/10.3168/jds.2007-0368

McMurray, C. H., W. J. Blanchflower, and D. A. Rice. 1984. Automated kinetic method for d-3-hydroxybutyrate in plasma or serum. Clinical chemistry, 30(3), 421-425.‏10.1093/clinchem/30.3.421

Meral, Y., Ç. Kara, and H. Biricik. 2015. Influence of glycerol supplementation to dairy and feedlot cattle diets on performance and health: a review. J Biol Environ Sci, 9, 109-117.‏ https://dergipark.org.tr/tr/download/article-file/497368

‏Mirzaei, M., M. Khorvash, G. R. Ghorbani, M. Kazemi-Bonchenari, and M. H. Ghaffari. 2017. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision. Journal of dairy science, 100(2), 1086-1094.‏https://doi.org/10.3168/jds.2016-11592

Novais-Eiras, D., G. G. P. de Carvalho, L. C. Leite, C. E. Eiras, J. E. de Freitas Junior, D. dos Santos Pina, and P. A. Grande. 2018. Crude glycerin in the feed supplementation of lactating goats on pasture. Small Ruminant Research, 168, 39-46 https://doi.org/10.1016/j.smallrumres.2018.09.001

Omazic, A. W., M. Traven, S. Roos, E. Mellgren, and K.Holtenius. 2013. Oral rehydration solution with glycerol to dairy calves: effects on fluid balance, metabolism, and intestinal microbiota. Acta Agriculturae Scandinavica, Section A–Animal Science, 63 (1), 47-56. https://doi.org/10.1080/09064702.2013.785585

Osman, M., N. Mehyar, G. Bobe, J. F. Coetzee, and D. C. Beitz. 2006. Acute effects of subcutaneous injection of glucagon and/or oral administration of glycerol on blood metabolites and hormones of holstein dairy cows affected with fatty liver disease. Animal Industry Report, 652(1).‏ https://doi.org/10.31274/ans_air-180814-834

Ozkaya, S., and Y.Bozkurt. 2008. The relationship of parameters of body measures and body weight by using digital image analysis in pre-slaughter cattle. Archives Animal Breeding, 51(2), 120-128.‏ https://doi.org/10.5194/aab-51-120-2008

Pradhan, S., and R. S.Malani. 2022. Assessment of Farm-level Biodiesel Unit—a Potential Alternative for Sustainable Future. In Handbook of Biofuels pp. 377-396 Academic Press.https://doi.org/10.1016/B978-0-12-822810-4.00019-1

Ramos, M. H., and M. S. Kerley. 2012. Effect of dietary crude glycerol level on ruminal fermentation in continuous culture and growth performance of beef calves. Journal of Animal Science, 90(3), 892-899.‏https://doi.org/10.2527/jas.2011-4099

Saleem, A. M., A. I. Zanouny, and A. M. Singar. 2018. Effect of glycerol supplementation during early lactation on milk yield، milk composition، nutrient digestibility and blood metabolites of dairy buffaloes. Animal, 12(4), 757-763 https://doi.org/10.1017/S175173111700180X

SAS. 2012. Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. USA

Syahniar, T. M., M. Ridla, A. A. Samsudin, and A. Jayanegara. 2016. Glycerol as an energy source for ruminants: a meta-analysis of in vitro experiments. Media Peternakan, 39(3), 189-194. ‏https://doi.org/10.5398/medpet.2016.39.3.189

Trinder, P. 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of clinical Bioche-mistry, 6(1), 24-27. https://doi.org/10.1177/000456326900600108

Wang, J., H. Jiang, Y. Alhamoud, Y. Chen, J. Zhuang, T. Liu, and F.Feng. 2022. Integrated metabolomic and gene expression analyses to study the effects of glycerol monolaurate on flesh quality in large yellow croaker (Larimichthys crocea). Food Chemistry, 367, 130749. https://doi.org/10.1016/j.foodchem.2021.130749

Omazic, A. W. 2013. Glycerol supplementation in dairy cows and calves. Department of animal nutrition and management, swedish university of agricultural sciences.‏ (Vol. 2013, No. 2013: 83). https://res.slu.se/id/publ/51909

Downloads

Published

2024-02-25

Issue

Section

Articles

How to Cite

W. A. Khalid, & N. N. Al-Anbari. (2024). EFFECT OF GLYCEROL ON PERFORMANCE AND SOME BLOOD CHARACTERISTICS OF HOLSTEIN CALVES . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 55(1), 382-391. https://doi.org/10.36103/731zw966

Similar Articles

201-210 of 499

You may also start an advanced similarity search for this article.