GENETIC DIVERSITY AND POPULATION STRUCTURE OF COMMON BEAN GENOTYPES USING MORPHOLOGICAL TRAITS AND SSR

Authors

DOI:

https://doi.org/10.36103/ijas.v54i3.1762

Keywords:

water stress, polymorphic information contents (PIC), principal component analysis (PCA), allele frequency

Abstract

The objectives of this study were to estimate the performance of the common bean (Phaseolus vulgaris L.)  genotypes under water-stress conditions, and their genetic diversity. White bean surpassed the others for relative water content, root/shoot ratio and leaf area under water-stress condition. Scatter plot indicates a strong association of yield with pod numbers plant-1, branch number and harvest index. A total of 69 polymorphic were obtained, applying 26 SSR primers on 14 genotypes. Major allele frequency was 0.601, and the average value of PIC was 0.407. The highest value of gene diversity (0.745) and PIC (0.704) were recorded for BMd-23 marker. Molecular variance among population indicated 25%, while 47% was realized within populations. Structure analysis divided the common bean genotypes into three groups (DeltaK value =3). Chity and Boschbohnen were identified to have a mixed ancestor while all the others were pure at their populations. A dendrogram and PCoA analyses are accordingly indicated three groups of the genotypes based on SSR marker data. STRUCTURE, UPGMA and PCoA analysis revealed the presence of two separated gene pools of Andean and Mesoamerican common beans, with a high level of genetic differentiation (FST value=0.250). Both phenotypic and molecular genetic outcomes here would accelerate future improvement programs.

References

Abdul-Razzak Tahir, N., N. Ahmad, K. Mustafa, and D. Kareem. 2021. Diversity maintenance of some barley (Hordeum spp) genetic resources using SSR-based marker. JAPS: Journal of Animal & Plant Sciences 31 (1):221-234

Ahmad, N. S., N. Moradi, J. G. Rafaat, and D. J. Mohammed. 2021. Genetic Variability and Heritability Estimates of Agronomic Traits in Lentil (Lens culinaris Medik.). Romanian Agricultural Research 38:9-20

AL-Jeboori, K. D., M. Z. K. AL-Mharib, A. Q. Hamdan, and A.H.Mahmood. 2017. Effect of irrigation intervals and foliar of salicylic acid on growth and yield of Potato. Iraqi Journal of Agricultural Sciences, 48(1): 242–247. https://doi.org/10.36103/ijas.v48i1.440

Al-khalaf, K., S. Lawand, and H. Al-mahasneh. 2022. Genetic Relationship Between Some Barley Genotypes (Hordeum vulgare L.) Using SSR Technique (Microsatellite). Iraqi Journal Of Agricultural Sciences 53 (4):890-900. https://doi.org/10.36103/ijas.v53i4.1601

Al-Rukabi, M. N., and K. D. H. Al-Jebory. 2017. Response of green bean to nitrogen fixing bacterial inoculation and molybdenum. Iraqi Journal of Agricultural Sciences,48(2):413-421. https://doi.org/10.36103/ijas.v48i2.403

Al-Rukabi, M. N., and K. D. H. Al-Jebory. 2017. Effect of bio-fertilizers and molybdenum on growth and yield of green bean. Iraqi Journal of Agricultural Sciences,48(3):681-689. https://doi.org/10.36103/ijas.v48i3.380

Bhakta, M. S., S. A. Gezan, J. A. Clavijo Michelangeli, M. Carvalho, L. Zhang, J. W. Jones, K. J. Boote, M. J. Correll, J. Beaver, and J. M. Osorno. 2017. A predictive model for time-to-flowering in the common bean based on QTL and environmental variables. G3: Genes, Genomes, Genetics 7 (12):3901-3912

Bhandari, H., A. Bhanu, K. Srivastava, M. Singh, and H. A. Shreya. 2017. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res 7 (3):00255

Blair, M. W., F. Pedraza, H. Buendia, E. Gaitán-Solís, S. E. Beebe, P. Gepts, and J. Tohme. 2003. Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 107 (8):1362-1374

Blair, M. W., A. Soler, and A. J. Cortes. 2012. Diversification and population structure in common beans (Phaseolus vulgaris L.). Plos one 7 (11):e49488

Blair, M. W., M. M. Torres, M. C. Giraldo, and F. Pedraza. 2009. Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biology 9 (1):1-14

Carović-Stanko, K., Z. Liber, M. Vidak, A. Barešić, M. Grdiša, B. Lazarević, and Z. Šatović. 2017. Genetic diversity of Croatian common bean landraces. Frontiers in plant science 8:604

Carvalho, M. S., C. M. de Oliveira Moulin Carias, M. A. Silva, M. F. da Silva Ferreira, T. L. P. O. de Souza, S. C. P. Posse, and A. Ferreira. 2020. Genetic diversity and structure of landrace accessions, elite lineages and cultivars of common bean estimated with SSR and SNP markers. Molecular Biology Reports 47 (9):6705-6715

Chaudhary, P., S. Godara, A. Cheeran, and A. K. Chaudhari. 2012. Fast and accurate method for leaf area measurement. International journal of computer applications 49 (9):22-25

Cortinovis, G., G. Frascarelli, V. Di Vittori, and R. Papa. 2020. Current state and perspectives in population genomics of the common bean. Plants 9 (3):330

De Luca, D., P. Cennamo, E. Del Guacchio, R. Di Novella, and P. Caputo. 2018. Conservation and genetic characterisation of common bean landraces from Cilento region (southern Italy): high differentiation in spite of low genetic diversity. Genetica 146 (1):29-44

Delfini, J., V. Moda-Cirino, J. dos Santos Neto, P. M. Ruas, G. C. Sant’Ana, P. Gepts, and L. S. A. Gonçalves. 2021. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Scientific reports 11 (1):1-12

Díaz, L. M., and M. W. Blair. 2006. Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theoretical and Applied Genetics 114 (1):143-154

Elias, M. S. and K. D. H. Al-Jubouri. 2022. Investigate Genetic Relation Among Watermelon Cultivars Using Molecular Dna Markers. Iraqi Journal of Agricultural Sciences, 53(3): 712–723. https://doi.org/10.36103/ijas.v53i3.1581

Esho, K. B., K. N. Najim, and M. K. AL-Gumar. 2020. Genotypic, Phenotypic Coefficient Variation, Heritability and Regression of Phaseolus Genotypes Under Nineveh governorate, Iraq. Acta Scientific Agriculture (ASAG) (2):15-19

Fahad, S., A. A. Bajwa, U. Nazir, S. A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, and S. Saud. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in plant science 8:1147

Fisseha, Z., K. Tesfaye, K. Dagne, M. W. Blair, J. Harvey, M. Kyallo, and P. Gepts. 2016. Genetic diversity and population structure of common bean (Phaseolus vulgaris L) germplasm of Ethiopia as revealed by microsatellite markers. African Journal of Biotechnology 15 (52):2824-2847

Gioia, T., G. Logozzo, S. Marzario, P. Spagnoletti Zeuli, and P. Gepts. 2019. Evolution of SSR diversity from wild types to US advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). Plos one 14 (1):e0211342

Gupta, N., S. M. Zargar, R. Salgotra, and T. A. Dar. 2019. Identification of drought stress-responsive proteins in common bean. Journal of Proteins and Proteomics 10 (1):45-53

Gupta, N., S. M. Zargar, R. Singh, M. Nazir, R. Mahajan, and R. Salgotra. 2020. Marker association study of yield attributing traits in common bean (Phaseolus vulgaris L.). Molecular Biology Reports 47 (9):6769-6783

Hasan, N., S. Choudhary, N. Naaz, N. Sharma, and R. A. Laskar. 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19 (1):1-26

Herrington, C., K. Lividini, M. D. Angel, and E. Birol. 2019. Prioritizing countries for biofortification interventions: Biofortification Priority Index 2nd Edition (BPI 2.0). HarvestPlus Working Paper (40).

Kavar, T., M. Maras, M. Kidrič, J. Šuštar-Vozlič, and V. Meglič. 2008. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Molecular breeding 21 (2):159-172

Khan, M. M. H., M. Y. Rafii, S. I. Ramlee, M. Jusoh, M. Al Mamun, and J. Halidu. 2021. DNA fingerprinting, fixation-index (Fst), and admixture mapping of selected Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions using ISSR markers system. Scientific reports 11 (1):1-23

Khattab, E., R. Essa, and M. Ahmed. 2019. Drought tolerance of some soybean varieties in newly land. Iraqi Journal of Agricultural sciences 50 (3):741-752. https://doi.org/10.36103/ijas.v50i3.690

Kumar, S., G. Stecher, M. Li, C., and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35 (6):1547

Lanna, A. C., S. T. Mitsuzono, T. G. R. Terra, R. Pereira Vianello, and M. A. d. F. Carvalho. 2016. Physiological characterization of common bean ('Phaseolus vulgaris' L.) genotypes, water-stress induced with contrasting response towards drought. Australian Journal of Crop Science 10 (1):1-6

Leitão, S. T., M. C. Bicho, P. Pereira, M. J. Paulo, M. Malosetti, S. d. S. Araújo, F. van Eeuwijk, and M. C. Vaz Patto. 2021. Common bean SNP alleles and candidate genes affecting photosynthesis under contrasting water regimes. Horticulture Research 8 (4):14

Liu, N., L. Chen, S. Wang, C. Oh, and H. Zhao. 2005. Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure. BMC Genetics 6 (1):1-5

Long, J., J. Zhang, X. Zhang, J. Wu, H. Chen, P. Wang, Q. Wang, and C. Du. 2020. Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm resources in Chongqing, evidenced by morphological characterization. Frontiers in genetics 11:697

Mir, R. R., N. Choudhary, V. Bawa, S. Jan, B. Singh, M. A. Bhat, R. Paliwal, A. Kumar, A. Chitikineni, and M. Thudi. 2021. Allelic Diversity, Structural Analysis, and Genome-Wide Association Study (GWAS) for Yield and Related Traits Using Unexplored Common Bean (Phaseolus vulgaris L.) Germplasm From Western Himalayas. Frontiers in genetics:1797

Murube, E., R. Beleggia, D. Pacetti, A. Nartea, G. Frascarelli, G. Lanzavecchia, E. Bellucci, L. Nanni, T. Gioia, and U. Marciello. 2021. Characterization of Nutritional Quality Traits of a Common Bean Germplasm Collection. Foods 10 (7):1572

Nkhata, W., H. Shimelis, R. Melis, R. Chirwa, T. Mzengeza, I. Mathew, and A. Shayanowako. 2020. Population structure and genetic diversity analyses of common bean germplasm collections of East and Southern Africa using morphological traits and high-density SNP markers. Plos one 15 (12):e0243238

Nkhata, W., H. Shimelis, R. Melis, R. Chirwa, T. Mzengeza, I. Mathew and A. Shayanowako, 2021a. Combining ability analysis of common bean (Phaseolus vulgaris L) genotypes for resistance to bean fly (Ophiomyia spp.), and grain yield and component traits. Euphytica 217 (5):1-15

Nkhata, W., H. Shimelis, R. Melis, R. Chirwa, T. Mzengeza, I. Mathew and A. Shayanowako, 2021b. Selection for bean fly (Ophiomyia spp) resistance and agronomic performance in selected common bean (Phaseolus vulgaris L.) accessions. Crop Protection 140:105404

Philipo, M., P. A. Ndakidemi, and E. R. Mbega. 2021. Environmentally stable common bean genotypes for production in different agro-ecological zones of Tanzania. Heliyon 7 (1):e05973

Pocovi, M. I., N. G. Collavino, Á. Gutiérrez, G. M. Taboada, V. Castillo, R. Delgado, M. Martinez, and J. Alberto. 2020. Molecular versus morphological markers to describe variability in sugar cane (Saccharum officinarum) for germplasm management and conservation. Rev. FCA UNCUYO 52 (1):1853-8665

Qadir, S., M. Khursheed, T. Rashid, and H. Awla. 2019. Abscisic acid accumulation and physiological indices in responses to drought stress in wheat genotypes. Iraqi Journal of Agricultural Sciences 50 (2):705-712. https://doi.org/10.36103/ijas.v2i50.670

Qiu, Z. 2021. Evaluation of the Bioactive Properties of Peptides Derived From the Common Bean (Phaseolus vulgaris L.), Biology The University of Western Ontario

Saeidi, K., N. Zare, A. Baghizadeh, and R. Asghari-Zakaria. 2019. Phaseolus vulgaris genome possesses CAMTA genes, and phavuCAMTA1 contributes to the drought tolerance. Journal of genetics 98 (1):1-14

Savić, A., B. Pipan, M. Vasić, and V. Meglič. 2021. Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm from Serbia, as revealed by single sequence repeats (SSR). Scientia Horticulturae 288:110405

Scarano, D., F. Rubio, J. J. Ruiz, R. Rao, and G. Corrado. 2014. Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Scientia Horticulturae 180:72-78

Singh, A., I. Lehner, and C. Schöb. 2022. Effect of Drought on Bean Yield Is Mediated by Intraspecific Variation in Crop Mixtures. Frontiers in plant science 13:813417

Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39 (1):53-65

Smith, M. R., I. M. Rao, and A. Merchant. 2018. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in plant science 9:1889

Thinley, J., and C. Dorji. 2021. Screening of beans (Phaseolus vulgaris L.) genotypes for drought tolerance. BioRxiv

Veluru, A., K. V. Bhat, D. V. S. Raju, K. V. Prasad, J. Tolety, C. Bharadwaj, S. V. A. C. R. Mitra, N. Banyal, K. P. Singh, and S. Panwar. 2020. Characterization of Indian bred rose cultivars using morphological and molecular markers for conservation and sustainable management. Physiology and Molecular Biology of Plants 26 (1):95-106

Vidak, M., K. Carović-Stanko, A. Barešić, M. Grdiša, Z. Šatović and Z. Liber. 2017. Microsatellite markers in common bean (Phaseolus vulgaris L.). Journal of Central European Agriculture 18 (4):902-917

Vidak, M., Z. Šatović, Z. Liber, M. Grdiša, J. Gunjača, A. Kilian, and K. Carović-Stanko. 2021. Assessment of the Origin and Diversity of Croatian Common Bean Germplasm Using Phaseolin Type, SSR and SNP Markers and Morphological Traits. Plants 10 (4):665

Vidal, N. P., C. F. Manful, T. H. Pham, P. Stewart, D. Keough, and R. Thomas. 2020. The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX 7:100835

Wang, B., S. Li, L. Zou, X. Guo, J. Liang, W. Liao, and M. Peng. 2022. Natural variation MeMYB108 associated with tolerance to stress-induced leaf abscission linked to enhanced protection against reactive oxygen species in cassava. Plant cell reports:1-15

Wang, H., B. Yang, H. Wang, and H. Xiao. 2021. Impact of different numbers of microsatellite markers on population genetic results using SLAF-seq data for Rhododendron species. Scientific reports 11 (1):1-9

Yu, K., S. Park, V. Poysa, and P. Gepts. 2000. Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Journal of Heredity 91 (6):429-434

Zargar, S. M., S. Farhat, R. Mahajan, A. Bhakhri, and A. Sharma. 2016. Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean. Saudi Journal of Biological Sciences 23 (1):139-149

Zdravković, M., J. Zdravković, L. Stanković, and N. Pavlović. 2005. Combining abilities of inheriting first pod height of some French bean lines-Phaseolus vulgaris L. Genetika 37 (1):65-70.

Downloads

Published

2023-06-25

Issue

Section

Articles

How to Cite

Shawin A. Khdir, N. S. Ahmad, E. O. Hama-Ali, & Sh. M. Abdullah. (2023). GENETIC DIVERSITY AND POPULATION STRUCTURE OF COMMON BEAN GENOTYPES USING MORPHOLOGICAL TRAITS AND SSR . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 54(3), 792-805. https://doi.org/10.36103/ijas.v54i3.1762

Similar Articles

81-90 of 686

You may also start an advanced similarity search for this article.