EFFECT OF DIFFERENT LEVELS OF NITROGEN AND POTASSIUM FERTILIZERS APPLICATION ON NUTRIENT BALANCE AND YIELD OF BROCCOLI (Brassica oleraceae)

	(
A.T. R. Dizayee	H. A. Saleh
Assist. Prof.	Researcher
College of Agriculture, U	Jniversity of Salahaddin- Erbil
Dizayee@su.edu.krd	halmatawni@yahoo.com

ABSTRACT

A study was conducted during fall season of 2015-2016 at Qwshtapa farm village of Grdmala, Erbil to study the effect of different rates of Nitrogen and Potassium fertilizers application on nutrient balance and yield of Broccoli. Treatments included 5 levels of nitrogen (0, 60,120,180 and 240 kg N ha⁻¹), and 5 levels of potassium (0,150,300,450 and 600 kg K ha⁻¹) in factorial experiment in RCBD with three replicates. The Diagnosis and Recommendation Integrated system (DRIS) methodology was applied to study nutrient balance. Results indicated that yields were 23.916 and 11.233 Mg ha⁻¹ for N₃K₁ and N₀K₀ respectively. Values of Absolute Total (AT)"Nutrient Balance" were 45.82 and 9.96 for N₀K₀ and N₃K₁, respectively. From DRIS and ABI values it can be concluded that N and P were the most limiting nutrients for Broccoli production in this area of Kurdistan-Iraq and soil test was good indicator for soil fertility.

Key Words: DRIS, Broccoli, NBI *Part of MSc Thesis of the 2nd Author

ة الزراعة –جامعة صلاح الدين–اربيل

halmatawni@yahoo.com

Dizayee@su.edu.krd

المستخلص

اجريت هذه الدراسة في حقل (قوشتة ثة) طرد ملا –اربيل في الموسم الخريفي 2015 لدراسة تأثير المستويات المختلفة من اسمدة النتروجين والبوتاسيوم في الاتزان الغذائي وإنتاجية البروكلي بإستعمال DRIS لتحديد الاتزان .وشملت التجربة خمسة مستويات من النتروجين (0، 60، 120، 180 و 240 كغم N ه⁻¹) و خمسة مستويات من البوتاسيوم (0، 150، 300، مستويات من النتروجين (0، 60، 120، 180 و 240 كغم N ه⁻¹) و خمسة مستويات من البوتاسيوم (0، 60، 150، 300 و 450 كغم N ه⁻¹) و خمسة مستويات من البوتاسيوم (0، 60، 150، 300، معتويات من النتروجين (0، 60، 120، 180 و 240 كغم N ه⁻¹) و خمسة مستويات من البوتاسيوم (0، 60، 150، 300 و 450 و 450 و 450 كغم N ه⁻¹) و خمسة مستويات من البوتاسيوم (0، 60، 150، 300، 450 و 450 و 450 و 450 معام القطاعات الكاملة المعشاة (RCBD) و بثلاثة مكررات .وبينت اهم النتائج ان قيم الانتاج كانت 23.916 و 11.230 و 11.230 مح⁻¹ للمعاملتين 1841 المعشاة (RCBD) و بثلاثة مكررات .وبينت اهم النتائج ان قيم الانتاج كانت 23.916 و 11.230 و 23.916 ميكاغرام ه⁻¹ للمعاملتين 1841 و 800 ينه كرات . القيم المطلقة (الاتزان الغذائي) كانت 85.92 و 23.916 ميكاغرام ه⁻¹ للمعاملتين 1841 و 100 يمكن القيم المعشاة (الاتزان الغذائي) كانت 85.926 و 10.6 للمعاملتين م N_0 و N_0 بالترتيب . ومن قيم 1950 و 180 يمكن المطلقة (الاتزان الغذائي) كانت 45.82 و 5.9 للمعاملتين الام₃ و الم₃ المعاملتين 10.306 و 190 يمكن المطلقة والاتزان الغذائي) كانت 45.826 و 10.6 للمعاملتين الم₃ و 10.50 و

الكلمات المفتاحية : نظام التشخيص والتوصية المتكامل DRIS وNBI والبروكلي.

*مستل من رسالة ماجستير للباحث الثاني.

INTRODUCTION

Broccoli (Brassica oleracea var. italica L.) one of the family of Cruciferae is a delicious vegetable and have a very good nutrition value,(16). This vegetable crop is very rich in vitamins A and C and Calcium, Phosphorus and Iron minerals (21). Broccoli can be grown on a wide range of soil types, ranging from coarse to fine soil especially when supplied with good level of organic matter (13). Fertilizer management (especially N,P, and K) can be consider as one of the most important factors for Broccoli production (15,21). Haque et al., (10), found marked increase in growth and yield of Broccoli in response to N application . Ying et. al,(25) observed that potassium was one of the most important element for yield of Broccoli. Cai et al, (7) and Brahma et al, (6) indicated that applying N and K produced the earliest curds of high quality and high yields. Pardeep- Kumar et al. (14) conducted an experiment on performance of different broccoli cultivars under different N, P and K rates. The maximum values for growth, yield and quality characteristics were obtained at the highest N, P and K levels (150, 90 and 60 kg. ha^{-1} , respectively). One of the methods for studying nutrient balance (NB) in plants is diagnosis and recommendation integrated system (DRIS) (5,23). The DRIS is a diagnostic approach that uses nutrient concentration ratios rather than concentration themselves, to interpret tissue analyses was developed to make an interpretation from the results of plant tissue chemical analyses for an recommendation accurate fertilizer (5). Another criteria is nutrient balance index provides information about (NBI) environmental stress (19). A nutrient deficit (negative value) indicates declining soil fertility, while nutrient surplus (positive data) can indicates a risk of polluting soil, water and air. Dizayee, (8) applied different rates of nitrogen phosphors and potassium fertilizer for soybean plant using DRIS methodology, showed that the maximum yield was obtain from the combination treatments of $(N_{240} P_{60})$ K_{50}). Therefore, this study aimed to investigate the effect of different levels of N and K on nutrient balance in plant using DRIS and yield of broccoli.

MATERIAL AND METHODS

This experiment was conducted during winter growing of season of 2015-2016 at Qwshtapa farm, village of Grdmala, with GPS reading of latitude $36^{\overline{0}}$ 06.9 N, and longitude 44 $03^{\overline{0}}$ E, 413.8 meter above sea level to study effects of different rates of N and K on nutrient balance and productivity of Broccoli . After land preparations 25 plots, with $2m^2$ (2×1m) were established leaving 2m between blocks and plots. Treatments included 5 levels of nitrogen $(0, 60, 120, 180 \text{ and } 240 \text{ kg N ha}^{-1})$ using Urea (46%N) as source of nitrogen, 5 levels of potassium (0, 150, 300, 450 and 600 kg K ha⁻¹) using potassium Sulfate (42 %K) as source of potassium and their combinations ,using factorial with RCBD in three replicates. Table 1. some physical and chemical properties of

	5011		
Physical proper	ties	Value	Unite
Texture name	Sand Silt Clay Silt clay loam	184 450 366	g kg ⁻¹ soil
Bulk density Chemical prope	1.31 erties)	<i>M</i> g m ⁻³
nH	7.5		
EC	0.8		dS m ⁻¹
O.M	14	``	g kg ^{-r} soil
Available N Available P Available K	25 7.5 340	}	<i>mg</i> kg ¹ soil
Available K	340		
Equivalent CaCO3	330	}	g kg ⁻¹ soil
Active CaCO ₃	15.2		
CEC	29.3	,	Cmol _c kg ⁻ ¹soil

Constant level of phosphorus (130 kg P ha⁻¹) was applied using TSP (21%P) as source of phosphorus. Soil Samples were taken at depth of 0-30 cm before transplanting and passed through 2mm sieve for soil analysis (Table 1). The source of irrigation water was a well at the field experiment with pH =7.63 and EC = 0.5dS m⁻¹ using drip irrigation method and watermark for irrigation. Plant samples were taken at flowering stage for leaf and head analyses (21). Calculation of DRIS indices and norms were estimated according to Abd EI-Rheem, (1) and explained in Saleh(18). **Statistical** parameters were evaluated

according to Esmail *et al*, (9) and the comparisons among values according to Turkey's multiple range test at (P<= 0.05).Relative yield% was obtained by dividing treatment yield on maximum yield $\times 100$.

RESULTS AND DISCUSSION

Application of nitrogen significantly increased yield of broccoli with N₂ giving the highest value of 20.663 *M*g ha¹ compared to the lowest value of 15.915 *M*g ha¹⁻ produced by N₀ (Table 2). These results are in agreement with Anwar *et al.* (2) who found that different levels of nitrogen increased yield of Broccoli plant and disagreed with Vagen, (22) who observed that nitrogen had no effect of on Broccoli. Application of potassium significantly increased yield of broccoli compared to control, the highest value was 19.905 Mg ha⁻¹ produced from K1 while the lowest value was 17.641 Mg ha¹⁻ produced from K₀(Table 2) .However,K₀ did not differ than K₃, which indicated that the response to K applications was not straight for word due to high level of available K in soil according to most literature (4). Comparable results were obtained by other investigators (7,17,24)Interaction between nitrogen and potassium levels had significant effect on yield of Broccoli. The highest mean value of 23.916 Mg ha¹⁻ was produced in K₁N₃ treatment, while the lowest 11.243 Mg ha¹⁻ was produced from N_0K_0 treatment. These results are in agreement with Singh et al. (20) for Broccoli.

Table 2. Effect of levels of nitrogen, potassium and their interaction on yield of Broccoli

	Yield of plant Mg ha ⁻¹									
Treatment	N ₀	N ₁	N_2	N ₃	N_4	Mean				
K ₀	11.243 ^f	18.700 ae	23.816 ^a	13.033 ^{ef}	21.416 a-c	17.641 ^b				
K ₁	14.300 ^{c-f}	19.510 ^{ae}	21.500 ab	23.916 ^a	20.300 a-d	19.905 ^a				
\mathbf{K}_2	19.200 ^{a-f}	20.433 ad	20.850 ad	17.316 ^{af}	21.200 ad	19.800 ^a				
K ₃	14.250 df	15.816 ^{bf}	19.350 ae	18.783 ^{a-e}	18.983 ae	17.436 ^b				
\mathbf{K}_4	20.583 ad	23.800 ^a	17.800 ^{af}	16.250 ^{b-f}	19.216 ae	19.530 ^a				
Mean	15.915 °	19.651 ^a	20.663 ^a	17.859 ^b	20.223 ^a					

Table (3) shows the nutrient concentration in leaf and yield for broccoli plant. The establishment of the standard values of DRIS norms depended on concentration ratio of the treatment for the yields above 80% .These norms were established locally depending on the nutrient concentration in all plots and their ratio from the most high yielding plants treatments and also defined the nutrient ratio **Table 3. Percentage of nutrient conc** for all elements according to method adopted by Hassan, (11) in accordance with Walworth and Summer, (23), and Serra et al (19) using means, standard deviation (Std) and coefficient of variance(CV) for nutrient in combination treatments with 80% yield. DRIS index equal to zero indicating that the nutrient is in the optimum level while positive and negative values indicate unbalance (3).

able	3.	Percentage	of nutrient	concentration	in	leaf.	vield	and	relative	vield	ł
	~ •	1 of contage	or matterie	concentration			,		I CICCI I C	J	~

treatment	N %	Р %	К %	Yield. Mg. ha ⁻¹	R. Y %				
N_0K_0	4.15	0.18	2.25	11.233	47				
N ₀ K ₁	5.1	0.18	2.7	14.300	59.8				
N_0K_2 1	5.75	0.37	2.43	19.200	80.3				
N_0K_3	5.06	0.19	2.83	14.250	59.6				
N ₀ K _{4 2}	5.65	0.15	2.67	20.583	86.1				
N_1K_0	5.11	0.2	2.04	18.683	78.1				
N ₁ K _{1 3}	6.25	0.26	2.5	19.416	81.2				
N ₁ K _{2 4}	6.19	0.21	2.45	20.433	85.4				
N_1K_3	4.5	0.33	2.48	15.816	66.1				
N ₁ K _{4 5}	6.2	0.23	2.59	23.800	99.5				
N ₂ K _{0 6}	6.1	0.221	2.29	23.816	99.6				
N_2K_1 7	5.9	0.22	2.47	21.500	89.9				
N ₂ K _{2 8}	5.44	0.25	2.54	20.850	87.2				
N ₂ K ₃ 9	5.77	0.37	2.47	19.350	80.9				
N_2K_4	6.4	0.23	2.45	17.800	74.4				
N_3K_0	6.54	0.19	2.57	13.033	54.5				
N ₃ K _{1 10}	5.95	0.34	2.42	23.916	100				
N ₃ K ₂	6.2	0.27	2.8	17.316	72.4				
N_3K_3	6.34	0.38	2.5	18.783	78.5				
N_3K_4	5.28	0.25	2.57	16.250	67.9				
N ₄ K _{0 11}	5.75	0.48	2.43	21.416	89.5				
N_4K_1 12	5.14	0.28	2.77	20.300	84.9				
N ₄ K _{2 13}	5.76	0.45	2.72	21.200	88.6				
N ₄ K ₃	6.55	0.46	2.28	18.983	79.4				
N ₄ K _{4 14}	6.11	0.75	2.61	19.216	80.3				
The Norms are from 1 to 14									

	Nutr	ient ratio			Function		INDICES					
treatment	N/P	N/K	P/K	F(N/P)	F(N/K)	F(P/K)	N index	P index	K index	A.T	Yield Mg. ha ⁻¹	R.Y%
N_0K_0	23.06	1.85	0.08	2.63	-28.94	-16.87	-13.16	-9.75	22.91	45.82	11.233	47
N_0K_1	28.40	1.89	0.07	9.43	-25.75	-25.97	-8.16	-17.70	25.86	51.72	14.300	59.8
N_0K_2	15.70	2.37	0.15	-8.79	1.93	4.48	-3.43	6.64	-3.21	13.28	19.200	80.3
N_0K_3	27.13	1.79	0.07	7.80	-33.49	-26.45	-12.84	-17.13	29.97	59.94	14.250	59.6
N_0K_4	36.85	2.12	0.06	20.17	-11.11	-34.50	4.53	-27.33	22.80	54.68	20.583	86.1
N_1K_0	25.98	2.50	0.10	6.35	8.50	-9.34	7.42	-7.84	0.42	15.68	18.683	78.1
N_1K_1	23.70	2.50	0.11	3.45	8.26	-6.35	5.86	-4.92	-0.96	11.72	19.416	81.2
N_1K_2	29.46	2.53	0.09	10.77	9.47	-13.96	10.12	-12.37	2.25	24.74	20.433	85.4
N_1K_3	13.61	1.83	0.13	-14.48	-30.31	1.19	-22.40	7.84	14.56	44.80	15.816	66.1
N_1K_4	26.87	2.39	0.09	7.48	2.81	-12.51	5.15	-10	4.85	20	23.800	99.5
N_2K_0	27.71	2.67	0.10	8.55	16.59	-9.31	12.57	-8.93	-3.64	25.14	23.816	99.6
N_2K_1	26.71	2.35	0.09	7.28	1.19	-12.88	4.20	-10.08	5.88	20.16	21.500	89.9
N_2K_2	22.05	2.14	0.10	1.35	-9.64	-9.07	-4.15	-5.21	9.36	18.72	20.850	87.2
N_2K_3	15.59	2.33	0.15	-9.26	0.20	4.46	-4.53	6.86	-2.33	13.72	19.350	80.9
N_2K_4	27.51	2.62	0.10	8.30	14.03	-9.79	11.17	-9.05	-2.12	22.34	17.800	74.4
N_3K_0	27.25	2.52	0.09	7.96	9.00	-10.99	8.48	-9.47	0.99	18.94	13.033	54.5
N_3K_1	17.49	2.48	0.14	-5.35	7.20	2.75	0.93	4.05	-4.98	9.96	23.916	100
N_3K_2	22.98	2.22	0.10	2.52	-5.62	-9.33	-1.55	-5.88	7.48	14.96	17.316	72.4
N_3K_3	16.70	2.53	0.15	-6.85	9.92	4.92	1.53	5.88	-7.42	14.82	18.783	78.5
N_3K_4	20.83	1.95	0.09	-0.21	-21.25	-10.36	-10.73	-5.08	15.81	31.62	16.250	67.9
N_4K_0	11.93	2.40	0.20	-20.29	3.28	15.48	-8.50	17.88	-9.38	35.76	21.416	89.5
N_4K_1	18.58	1.86	0.10	-3.47	-28.31	-8.05	-15.89	-2.29	18.18	36.36	20.300	84.9
N_4K_2	12.71	2.12	0.17	-17.42	-11.02	8.13	-14.22	12.77	1.45	28.44	21.200	88.6
N_4K_3	14.24	2.86	0.20	-12.66	25.50	15.49	6.42	14.08	-20.50	41	18.983	79.4
N_4K_4	8.15	2.34	0.29	-42.07	0.72	34.09	-20.68	38.08	-17.40	76.16	19.216	80.3

Table 5. the nitrogen, potassium and phosphorus status in broccoli plantdepending on NBI values.

treatment	N %	Р%	K %	NBIa	R. Y %
N_0K_0	Deficient	Deficient	Adequate	22.91	47
N ₀ K ₁	Deficient	Deficient	Adequate	25.86	59.8
N_0K_2	Deficient	Adequate	Deficient	6.64	80.3
N_0K_3	Deficient	Deficient	Adequate	29.97	59.6
N_0K_4	Adequate	Deficient	Adequate	27.33	86.1
N_1K_0	Adequate	Deficient	Adequate	7.42	78.1
N_1K_1	Adequate	Deficient	Deficient	5.86	81.2
N_1K_2	Adequate	Deficient	Adequate	12.37	85.4
N_1K_3	Deficient	Adequate	Deficient	22.40	66.1
N_1K_4	Adequate	Deficient	Adequate	10.00	99.5
N_2K_0	Adequate	Deficient	Deficient	12.57	99.6
N_2K_1	Adequate	Deficient	Adequate	10.08	89.9
N_2K_2	Deficient	Deficient	Adequate	9.36	87.2
N_2K_3	Deficient	Adequate	Deficient	6.86	80.9
N_2K_4	Adequate	Deficient	Deficient	11.17	74.4
N_3K_0	Adequate	Deficient	Adequate	9.47	54.5
N_3K_1	Adequate	Adequate	Deficient	4.98	100
N_3K_2	Deficient	Deficient	Adequate	7.48	72.4
N ₃ K ₃	Adequate	Adequate	Deficient	7.41	78.5
N_3K_4	Deficient	Deficient	Adequate	15.81	67.9
N_4K_0	Deficient	Adequate	Deficient	17.88	89.5
N_4K_1	Deficient	Deficient	Adequate	18.18	84.9
N_4K_2	Deficient	Adequate	Adequate	14.22	88.6
N ₄ K ₃	Adequate	Adequate	Deficient	20.50	79.4
N_4K_4	Deficient	Adequate	Deficient	38.08	80.3

From Tables 3,4 and 5 it can be seen that the treatment combinations (N_3K_1) regarded as the most balance among studied interaction with (A.T) is (9.96) which produced from DRIS indices of 0.93, 4.05, - 4.98 for Phosphorus and Potassium, Nitrogen, respectively and gave yield of 23.916 Mg ha⁻¹ The nutrient balance indices in this treatment are quite close to zero and can be consider as the most optimum treatment. Values of absolute total (AT) were 45.82 and 9.96 for N_0K_0 and N_3K_1 , respectively (Table 5) and these values were corresponded with 11.233 and 23.916 Mg ha⁻¹ and values of relative yield of (47% and 100%), respectively. All values between these two levels can be considered as either in excess (+ value) or in shortage (values). According to DRIS indices and NBI values (19) it can be concluded that the most limiting nutrients in the studied area were N and P and plants will respond to their application. These results confirmed what can be expected from soil analysis (Table 1). The soil initially had very good level of K and low levels of N and P according to nutrient sufficient values mentioned by other investigators for nitrogen (12) and for phosphorus (4).

REFERENCES

1.Abd EI- Rheem kh. M. 2013. Using Diagnosis and Recommendation Integrated System (DRIS) to Determine Nutrient Norms for Peanut Crop Soil and Water Dept., National Research Centre, Dokki, Giza, Egypt. 2.Anwar, M. N.; M. S. Huq, S. K. Nandy and M. S. Islam. 2000. Growth yield component and curd yield of broccoli as influenced by N, P, K, S and Mo in grey terrace soil. Bangladesh J. Agric. Res.; 25(4): 685-691. 3.Bal dock, J. O. and Schulte, E. E. 1996. Plant analysis with standardized scores DRIS and sufficiency combines range approaches for corn. Agronomy Journal. 88(3):. 448-456.

4.Bashoor, E. Al-fuli ,M. , A., Sagh , D . Anak , H. Abualhq, A. Babadoblis , and N. Ahmed, 2007. Guide for fertilizer uses in Far East . FAO, Rome.

5.Beaufils, E.R. 1973. Diagnosis and recommendation integrate system a general scheme of experimentation and calibration based on principles developed from research in

plant nutrition. South Africa: University of Natal, pieta, maritzburg.132p. (Soil Science Bulletin).

6.Brahma, S.; D. B. Phookan, B. P. Guatam and D. K. Bora. 2002. Effect of nitrogen, phosphorus and potassium on growth and yield of broccoli (*Brassica oleracea L. var. Italica*) cv. Pusa broccoli KTS. India J. Agric. Sci. 15(1):104-106.

7.Cai, Y. P.; M. Y. Liu and Z. M. Liu. 1999. A study on N, K application amount on broccoli raised in compound media. J. Hunan Agric. Univ.; 25(2): 99-102.

8.Dizayee, Alwand T. R.2012. Soil fertility evaluation based on potassium capacity of different soil from Erbil Governorate. Journal of Duhok Univ. 15(1):

9.Esmail, A. O., A. O. Mustafa, and A. K. Omer, 2003. Design and Analysis of Experiment (1st part). Agriculture Press. FAO. 10.Haque, M. E., Karem, A. J. M. Haider and T. Hossain, 1996. Effect of nitrogen on the growth and yield of broccoli. Bangladesh Hort., 24 (1&2): 53-57.

11.Hassan, A. H. 2000. Testing of (DRIS) on the plant soil for Mize fertilization. Ph D. Dissertation, Coll. Of Agric. Baghdad Univ. 12.Hassan, N .A .K. 1991. Calibration of soil test values for fertilizer nitrogen recommenddation. Iraqi J. Agric. Sci.22 (1):87-95. 13.Katayal, S. L. 1994. Vegetable Growing in India. Mohan Primaini; Oxford and IBH Publishing: 66, path; Newdlhi- 110001; P 45. 14.Pardeep- Kumar; Sharma- SK; Kumar-p, 2001. Performance of different sprouting broccoli (*Brassica oleracea L. var. Italica*) cultivars under different combinations of nitrogen, phosphorus and potassium. India J. Agri. Sci.; 71(8): 558-560;

15.Pieter, J. H. 1976. Effect of supplementary nitrogen manuring of sprouting broccoli for multiple harvesting. Bedrijsontwikkeling. 7(2): 111-115.

16.Rashid, M. M. 1990. Soil and Plant Nutrition . Rashid publishing House, 94, old, Dolts, Dhaka-PP. 250.

17.Ruan, R. J. gilkes. B. J. Scott. L. C. xie and X. Z. Hu. 1991. Potassium response of *Brassica chinensis* Baily in the Guangzhou area, southern china. Fertilizers Research, 29: 159-162.

18.Saleh, H. A. 2016. Effect of Nitrogen and Potassium On Nutrient Balance and Yield of Broccoli Using DRIS. MSc. Thesis ,College of Agriculture, University of Salahaddine-Erbil. 19.Serra, A. P, M. E. Marchetti, D. J. Bungenstab, M. A. G. DaSilva, R. P. Serra, and H. S. Demorais. 2013. Diagnosis and recommendation integrated system (DRIS) to ass's nutritional state of plants. INTECH, Ch.5:129-146.

20.Singh, A. K.; Akhilesh- Singh; Singh- A. 2000. Influence of nitrogen and potassium on growth and head yield of broccoli (*Brassica oleracea var. italica L.*) under low hills sub-tropical condition of Himachal Pradesh. Veg. Sci., 27(1): 99-100.

21.Thompson, H. C. and W. C. Kelly, 1988. Vegetable Crops. 5th Ed., Tata Me Graw Hill publishing company Ltd. New Delhi, India. P. 611.

22.Vagen, I. M. 2005. Nitrogen uptake utilization in broccoli (*Brassica oleracea var.* italica L). Ph. D Theses, Norwegian University of life Sciences.

23.Walworth, J.L. and M. E. summer 1987. Diagnosis recommendation integrates system (DRIS). Advance in Soil Science, 6:. 149-188. 24.Wyatt- JE; M ullins- CA, 1989. Potassium fertilization of broccoli transplants. Ferti-Res., 21(1): 13-18.

25.Ying. W. G., Z. C. Zheng and Z. Fush. 1997. Effect of nitrogen, phosphorus and potassium fertilizer on the yield physiology target of broccoli Chania Veg- 1; 14-17.