TAXONOMICAL IMPLICATIONS OF NATURAL COMPONENTS IN DELIMITATION OF SOME SPECIES OF ASTERACEAE FAMILY IN BAGHDAD

Rasha A. Al- SouzH. R. H. Al-NewaniResearcherAssist. Prof.Dept. Bio-Coll. Sci., Mustansiriyah UniversityEmail: sphh@uomustansiriyah.edu.iq

ABSTRACT

This study aimed to investigate the taxonomical relationship among eight species belonging to Asteraceae based on natural products as fresh leaves of eight species (*Carthamus tinctorius L., Centaurea iberica* Trevir. ex Spreng., *Conyza bonariensis* (L.) Cronquist, *Conyza canadensis* (L.) Cronquist, *Launaea mucronata* (Forssk.) Muschl., *Senecio glaucus L., Sonchus asper* (L.) Hill, and *Sonchus tenerrimus* L.) have been collected from different regions of Baghdad. The phytochemical screening of hexane extracts from eight plants showed different secondary metabolites in the studied species. Gas chromatography-mass spectrometry (GC-MS) analysis of eight hexane extracts showed the existence of eighty-one chemical compounds of eight taxa of Asteraceae, including hydrocarbons, alcohols, organic acids, esters, amines, and heterocyclic compounds. The agglomerative hierarchical clustering analysis dendrogram was carried out depending on 81 chemical compounds of the eight taxa of Asteraceae, gained by Euclidean distance using Ward's method. The HCA dendrogram showed the closeness of *Sonchus asper* and *Sonchus tenerrimus* and a divergence between *Conyza canadensis* and *Conyza bonariensis* and their affinity to *Launaea mucronata* while *Carthamus tinctorius* is the most divergent species from the rest of the species.

Keywords: Secondary metabolites, phytochemical analysis, Compositae family, HCA dendrogram.

السوز والنويني

مجلة العلوم الزراعية العراقية- 2213-2200:(6):55:2024

الاهمية التصنيفية للمركبات الطبيعية في عزل و تصنيف بعض اجناس العائلة المركبة في بغداد رشا عبد الرحيم السوز باحث قسم علوم الحياة ,كلية العلوم , الجامعة المستنصرية

المستخلص:

الكلمات المفتاحية : مركبات الايض الثانوي، التحليل الكيميائي النباتي، العائلة المركبة، المخطط الشجري لتحليل التجميع الهرمي.

Received:22/9/2023, Accepted:2/1/2024

INTRODUCTION

Nowadays, the application of secondary metabolites chemical markers as in chemotaxonomy has been used widely by taxonomists and botanists, as many studies demonstrated the role of natural compounds in solving the taxonomic problems. The occurrence of isolated natural substances has also been employed to illustrate similarities among different plant groups (40). The Asteraceae family, commonly known as the daisy family, is one of the largest and most diverse plant families in the world, with more than 23,000 species distributed worldwide. This family is characterized by its great morphological diversity, including herbaceous, shrubby, and climbing species, and its habitats range from desert to humid regions (31.33).

In Iraq, Asteraceae family represents an important component of the vegetation, contributing to the formation of various ecosystems and playing a vital role in maintaining biodiversity (17). Baghdad City witnessed major environmental changes due to the wars and conflicts that the country experienced, which affected the plant diversity in the region (3,7). This has led to a change in the distribution and abundance of some Asteraceae species and perhaps to a change in their ability to adapt and photosynthesize in their new environments (6, 19,20,38).

This study aims to explore the chemical diversity of some Asteraceae species in Baghdad. Using hierarchical clustering analysis (HCA) as a multivariate statistical tool to explore the relationships between different species based on their chemical composition (5, 9).

MATERIALS AND METHODS Plants collections

Fresh leaves of eight species were collected during the summer season of 2023 from different regions of Baghdad. The specimens have been identified by the curator of Mustansiriyah University Herbarium; however, the plant scientific names were checked at <u>https://powo.science.kew.org/</u>, and then the samples were rinsed with water and dried in air for two weeks at 25 °C and preserved in the herbarium.

Plant extracts and phytochemicals analysis Twenty grams of dried plant material were extracted with 100 ml of hexane for 6 hours at room temperature. The extracts were filtered and stored at 4°C (2). Phytochemical analysis was performed using the colorimetric method by using tests illustrated by (18,25,36). The phytochemical analysis was examined at the Ibn al-Baytar Research Center - Iraqi Ministry of Industry and Minerals Corporation of Research and Industrial Development.

Plant extracts and GC/MS analysis

Dried leaves of eight species from Asteraceae family were extracted using an ultrasonic probe (Q700CA Sonicator, USA) with nhexane (1:20 g/ml solvent/sample ratio) for 15 min at 20 kHz. The extract was filtered and stored at 4 °C (26). Gas chromatography-mass (GC/MS) analysis spectrometry was performed on an Agilent 7820A with a HP-5 ms column (30 m \times 250 µm) using helium as the carrier gas. The inlet and injector temperatures were 250 °C. The injection volume was 1 µl in splitless mode. Mass spectra were acquired at a rate of 10,000 units/s over a mass range of 25 to 1000 m/z. Compound identification was based on retention time (1). The chemical classification of chemical compounds produced by GC/MS was based on (10, 24).

HCA Dendrogram Analysis

A hierarchical cluster analysis using Ward's method and Euclidean distance was performed on 81 chemical compounds from eight species of the Asteraceae family to determine their relationships. The analysis was performed using SPSS version 26.0. (11,28).

RESULTS AND DISCUSSION Phytochemicals screening

Chemical analysis of non-polar crude hexane extracts from eight species showed that the phytochemicals prevalent most were glycosides and carbohydrates in all taxa. Flavonoids were found in all taxa except Launaea mucronata, while resins were recorded in all taxa except Senecio glaucus. Tannins and terpenes were observed in five taxa, while tannins were not recorded in three (Carthamus taxa tinctorius. Conyza bonariensis. and Senecio glaucus) and terpenes were absent in (Centaurea iberica, Conyza bonariensis, and Sonchus asper). Coumarins were found in Conyza canadensis, Launaea mucronata, and Senecio glaucus.

Iraqi Journal of Agricultural Sciences –2024:55(6):2200-2213

Al- Souz & Al-Newani

However, alkaloids were documented only in two taxa, *Senecio glaucus* and *Sonchus tenerrimus*. Phenols, proteins, saponins, and steroids were not detected in any studied taxa., as illustrated in Table 1.

The current results agreed with (8) as they reported the phytoconstituents of some of

these plants. However. different phytochemical compounds were identified in plant species, some suggesting that phytochemical composition can vary depending on various factors such as geographical location. environmental conditions, and plant age (12).

Species	Carthamus tinctorius	Centaurea iberica	Conyza bonariensis	Conyza canadensis	Launaea mucronata	Senecio glaucus	Sonchus asper	Sonchus tenerrimus
Phytochemicals tests						5	-	
Alkaloids Test	-	-	-	-	-	+	-	+
Glycosides Test	+	+	+	+	+	+	+	+
Phenols Test	-	-	-	-	-	-	-	-
Flavonoids Test	+	+	+	+	-	+	+	+
Tannins Test	-	+	-	+	+	-	+	+
Coumarins Test	-	-	-	+	+	+	-	-
Terpenes Test	+	-	-	+	+	+	-	+
Resins Test	+	+	+	+	+	-	+	+
Protein Test	-	-	-	-	-	-	-	-
Carbohydrate Test	+	+	+	+	+	+	+	+
Saponin Test	-	-	-	-	-	-	-	-
Steroids Test	-	-	-	-	-	-	-	-

Table 1. Phytochemicals analysis of hexane extracts of studied species

Gas chromatography-mass spectrometry (GC-MS) analysis

Gas chromatography-mass spectrometry (GC-MS) analysis of eight hexane extracts showed the existence of eighty-one chemical compounds of eight taxa of Asteraceae, including hydrocarbons, alcohols, organic acids. esters. amines, and heterocyclic compounds as listed in Tables from 2 to 9. Centaurea iberica had the highest chemical diversity with 29 compounds, followed by Conyza bonariensis and Launaea mucronata with 17 each. Conyza canadensis produced 12 compounds, Sonchus asper 11, Senecio glaucus 10, and Sonchus tenerrimus had the fewest with 6 compounds. The most common compounds that have been identified are Octadecanoic acid, Hexadecanoic acid, methyl ester, 9-Octadecenoic acid (Z)-, methyl ester, Eicosane, and 2-Heptadecanone. However, the chemical compounds that were abundant species were 3-Hexanone, 2,5across cyclohexadien-1-one,2,6-bis (1.1 dimethylethyl)-4-methylene-, Tetracosane, Nonadecane, Eicosane, Eicosyl isopropyl Nonane (Volatile and 2ether. oil) Heptadecanone.In addition, several unique compounds were detected in each species, such as1H-Imidazo[1,2-a] imidazole, 2-(4methoxyphenyl)-1,5,6-triphenyl- in Carthamus *tinctorius*, and Fagaronine and 14-.Beta.-H-Pregna in *Centaurea iberica*, 18-Pentatriacontanone in *Conyza bonariensis*,(22-Z)-Dehygrocholesterol-1-

Ether, Tetrahydrofuran-2-carboxylic

acid, dibenzofuran-3-ylamide and p-Camphorene in Convza canadensis, Nonacosane in Launaea mucronata, Nonyl Docosanoate in Senecio glaucus, Ethanone, 1,1'-[3,3'-biisoxazole]-5,5'-diylbis- in Sonchus asper. and Stigmasterol in Sonchus tenerrimus. The previous results agreed with (37, 39, 41) as they reported that Asteraceae species are rich in fatty acids such as Octadecanoic acid and Hexadecanoic acid (Palmitic acid). The main hydrocarbon compounds were Nonacosane, Tricosane, and Cyclotetracosane. The major representative 2-Octadecyloxy-1,1,2,2alcohols were Tetradeuteroethanol and 2-Tetradecanol (myristyl alcohol). Main oxygen-containing (20R)-6-Aza-7-oxo-5.alpha.compounds pregnan-3.beta.,20-divl acetate benzoate 3',7'-Dimethyloct-6'-enyl 3-methyl-2oxopentadecanoate and 2-Heptadecanone. Stigmasterol is an unsaturated phytosterol. The compounds main aromatic were 2.5cyclohexadien -1- one, 2, 6- bis (1,1dimethylethyl) -4- methylene- and 1, 2-Benzenedicarboxylic acid,bis(2-ethylhexyl)

Al- Souz & Al-Newani

ester. Numerous additional valuable chemical compounds were detected in this study, such as Heptadecane, a critical element in essential oil production and shown to possess both antiinflammatory and antimicrobial effects (34). 14-. Beta. -H-Pregna is a naturally occurring compound derived from steroid hormones and adrenergic receptor acts as an with antimicrobial and anti-inflammatory benefits (10). The study showed that the species Centaurea iberica contains the compound Fagaronine, which is a benzo phenanthrene alkaloid considered as a mutagen (30). Moreover, the species contained 9-Octadecenoic acid(Z)-,9-hexadecenyl ester. (Z)-. Numerous studies have demonstrated that octadecanoic fatty acid effectively inhibits the growth of *Pseudomonas aeruginosa* (15). Convza bonariensis exhibited the presence of DL-Glutamic-2-d acid, N-acetyl-, dimethyl ester (C_9H_{14} 2DNO₅) that contains Deuterium (D), which is a stable isotope of hydrogen, also known as heavy hydrogen (D²), Deuterium has a significant effect on biological systems, various morphological changes have been observed in cells and organisms treated with deuterium. Deuteration alters or disrupts many physiological processes, disrupting the cell cycle by blocking cell division and preventing DNA replication (22). Conyza bonariensis also contain the compound 2-(4'-Nitrophenyl)

quinoxaline-1,4-dioxide, which is one of the Quinoxaline derivatives and they are used against bacteria, fungi, conditions of viral infections, leishmaniasis, TB, malaria and cancer (21). The results showed that Launaea mucronata contains 2-Tetradecanol compound could result in immunosuppressive effects on disorders mediated by T cells (29). On the other hand, Sonchus asper contains important chemical compounds 1,2-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester, as this compound has antibacterial activity (14). In addition, Convza canadensis contains several significant compounds including a highly toxic and Di-(2-ethylhexyl) phthalate carcinogenic compound (DEHP), which is not produced naturally in plants, and its presence may reflect environmental pollution and the role of this plant in phytoremediation; this compound is widely used as a plasticizer in many industries Tetrahydrofuran-2-carboxylic (32). acid. dibenzofuran-3-ylamide is also a significant component found in Conyza canadensis; it is a volatile organic molecule utilized in cancer chemotherapy (4). However, diverse chemical compounds were found in this research, indicating that the plants' composition can change depending on various factors such as harvest season, plant age, and environment (13, 16).

Peak	Chemical compounds	Retention	Area%	Molecular	Molecular	Chemical
No.		Time (min.)	100%	formula	weight (g/mol)	classification
1	3-Hexanone	7.734	1.21	C ₆ H ₁₂ O	100.16	Ketone
2	2,5-cyclohexadien-1-one,2,6-bis(1,1- dimethylethyl)-4-methylene-	38.150	5.49	C ₁₅ H ₂₂ O	218.33	Unsaturated cyclic ketone
3	Nonadecane	53.999	1.21	$C_{19}H_{40}$	268.5	Alkane
4	trans-13-Octadecenoic acid, methylester	60.389	1.63	C ₁₉ H ₃₆ O ₂	296.48	Unsaturated fatty acid methyl ester
5	Fumaric acid, 2-decyl tridecyl ester	62.578	3.43	$C_{27}H_{50}O_4$	438.68	Diester of fumaric acid
6	Decanedioic acid, bis(1,2,2,6,6- pentamethyl-4-piperidinyl) ester	64.161	50.26	$C_{30}H_{56}N_2O_4$	508.8	Diester derived from decanedioic acid
7	6-Hexadecenoic acid, 7-methyl, methyl ester E	66.030	6.69	$C_{18}H_{34}O_2$	282.5	Unsaturated fatty acid
8	1H-Imidazo[1,2-a]imidazole,2-(4- methoxyphenyl)-1,5,6-triphenyl-	67.481	25.78	$C_{30}H_{23}N_3O$	441.53	Heterocyclic organic compound
9	1-Propanone,3-(2-hydroxyphenyl)- 1,3-diphenyl-	68.813	2.08	$C_{21}H_{18}O_2$	302.37	Aromatic ketone
10	Heneicosane, 3-methyl-	69.367	2.22	$C_{22}H_{46}$	310.6	Branched alkane

Table 2. GC-MS of the species Carthamus tinctorius

Figure 1. The chromatogram of the GC-MS analysis of the species *Carthamus tinctorius* Table 3. GC-MS of the species *Centaurea iberica*

PEAK NO.	CHEMICAL COMPOUNDS	RETENTION TIME (MIN.)	AREA% 100%	MOLECULAR FORMULA	MOLECULA R WEIGHT (G/MOL)	CHEMICAL CLASSIFICATION
1	3-Hexanone	7.734	0.26	C ₆ H ₁₂ O	100.16	Ketone
2 3	Hexane,2,4-DimethylI- 2,5-cyclohexadien-1-one,2,6- bis (1 ,1-dimethylethyl)-4- methylene-	8.151 38.150	0.16 1.22	C ₈ H ₁₈ C ₁₅ H ₂₂ O	114.23 218.33	Branched alkane Unsaturated cyclic ketone
4	Heptadecane	46.952	0.23	C17 H36	240.47	Alkane
5	Cyclotetradecane	48.215	0.67	$C_{14} H_{28}$	196.37	Cycloalkane
6	Octadecane	50.553	0.48	C ₁₈ H ₃₈	254.49	Alkane
7	Cyclotetracosane	51.147	1.49	C24H48	336.64	Cycloalkane
8	Tetracosane	52.319	4.85	C24 H50	338.66	Alkane
9	Z-5-Nonadecene	53.136	0.64	$C_{19}H_{38}$	266.5	Alkene
10	Nonadecane	53.982	4.7	$C_{19}H_{40}$	268.5	Alkane
11	1,19-Eicosadiene	55.696	1.19	$C_{20}H_{38}$	278.5	Alkadiene or diene
12	Iron, tricarbonyl [(2,3,4, 5eta.)-2,3,4,5-tetrahydroxy-	56.439	0.84	C ₈ H ₄ FeO ₈	283.957	Organometallic compound
	2,4-cyclopentadien-1-one]-			~ ~~		
13	Eicosane	57.251	0.43	$C_{20}H_{42}$	282.5	Alkane
14	Docosane	58.634	0.68	$C_{22}H_{46}$	310.6006	Alkane
15	Oxalic acid, hexadecyl 2- phenylethyl ester	59.074	1.25	$\mathrm{C}_{26}\mathrm{H}_{42}\mathrm{O}_{4}$	418.6	Diester
16	Heneicosane	60.377	2.35	$C_{21}H_{44}$	296.6	Alkane
17	9-Tricosene, (Z)-	60.829	2.38	$C_{23}H_{46}$	322.6	Alkene
18	Pentacosane	61.492	21.55	$C_{25}H_{52}$	352.7	Alkane
19	Citronellyl palmitoleate	61.886	1.88	$C_{25}H_{52}$	352.68	Ester
20	Heptacos-1-ene	62.503	2.05	C ₂₇ H ₅₄	378.71	Alkene
21	Bis(2-ethylhexyl) phthalate	63.241	23.5	$C_{24}H_{38}O_4$	390.56	Diester
22	Succinic acid,3,7- dimethyloct-6-en-1-yl octyl ester	63.869	4.29	$C_{22}H_{40}O_4$	368.55	Ester
23	14 BetaH-Pregna	65.121	0.62	$C_{21}H_{36}$	288.5	Steroid
24	cis-15-Tetracosenoic acid,propyl ester	65.853	0.41	C ₂₇ H ₅₂ O ₂	408.7	Ester of unsaturated fatty acid
25	Dodecane, 1- (methoxymethoxy)-	66.984	2.76	$C_{14}H_{30}O_2$	230.39	Ether
26	Fagaronine	67.744	8.77	$\mathrm{C}_{21}\mathrm{H}_{20}\mathrm{NO}_4$	350.39	Benzophenanthridi ne alkaloid
27	3-(1,3-Diphenyl-1H-pyrazol- 5-yl)-1-methyl-1H-indole	68.379	3.46	$C_{24}H_{19}N_3$	349.4	Heterocyclic organic compound
28	9-Octadecenoic acid(Z)-,9- hexadecenyl ester, (Z)-	68.996	1.72	$C_{34}H_{64}O_2$	504.9	Ester
29	3-Butyl-2-(acrydin-9'-yl) imino-1,3-thiazolidin-2-one	69.705	5.17	C ₂₀ H ₁₉ N ₃ OS	349.45	Heterocyclic organic compound

Figure 2. The chromatogram of the GC-MS analysis of the species Centaurea iberica

	Table 4. GC-MS of the species Conyza bonariensis								
Pea k No.	Chemical compounds	Retention Time (min.)	Area% 100%	Molecular formula	Molecula r weight (g/mol)	Chemical classification			
1 2	3-Hexanone DL-Glutamic-2-d acid,N-acetyl- ,dimethyl ester	7.734 8.151	0.28 0.15	C ₆ H ₁₂ O C ₉ H ₁₄ 2DNO ₅	100.16 218.23	Ketone Modified amino acid diester			
3	2,5-cyclohexadien-1-one,2,6-bis (1 ,1- dimethylethyl)-4-methylene-	38.156	1.59	$C_{15}H_{22}O$	218.33	Unsaturated cyclic ketone			
4	Tricosane	53.999	0.2	$C_{23}H_{48}$	324.6	Alkane			
5	Succinic acid,2,5- difluorobenzylheptadecyl ester	54.833	0.5	$C_{28}H_{44}F_2O_4$	482.64	Ester			
6	Ethanone,1-(2-thiazolyl)-	57.251	3.15	C ₅ H ₅ NOS	127.17	Heterocyclic ketone			
7	S-Chloro-S-fluoro-N-pentafluorosul fanylsulfilimine	58.543	2.4	CIF ₆ NS ₂	227.6	Sulfilimine or (sulfimide)			
8	N-[2-(2- isopropylphenoxy)ethyl]naphthalene- 2-sulfonamid	59.428	4.15	C ₂₁ H ₂₃ NO ₃ S	369.48	Sulfonamide			
9	4-Hexen-3-one, O-methyloxime	59.754	13.54	C ₇ H ₁₃ NO	127.18	Unsaturated ketone			
10	(20R)-6-Aza-7-oxo-5. alphapregnan- 3. beta.,20-diyl acetate benzoate	60.377	4.64	C ₂₉ H ₃₉ NO ₅	481.6	Modified steroid			
11	1-(2'-Acetoxyethoxymethyl)-5-(2,4- difluorobenzylamino) uracil	61.972	7.56	C ₁₆ H ₁₇ F2N ₃ O ₅	369.32	pyrimidine derivatives			
12	Tetracosane	64.378	4.63	C ₂₄ H ₅₀	338.7	Alkane			
13	3',7'-Dimethyloct-6'-enyl 3-methyl-2- oxopentadecanoate	65.430	1.24	$C_{26}H_{48}O_3$	408.7	Ester			
14	18-Pentatriacontanone	67.550	8.85	C ₃₅ H ₇₀ O	506.9	Ketone			
15	4H-1-Benzothiopyran-4-one,3-[(4- methylphenyl) amino]-,1-oxide	67.933	23.95	C ₁₆ H ₁₃ NO ₃ S	299.34	Heterocyclic organic compound			
16	Octadecanoic acid, ethenyl ester	69.179	11.28	$C_{20}H_{38}O_2$	310.51	Ester			
17	2-(4'-Nitrophenyl) quinoxaline-1,4- dioxide	70.368	11.89	$C_{14}H_9N_3O_4$	283.24	Heterocyclic compound			

able	e 4 .	GC-MS	of	the s	pecies	Conyza	bonariensis
------	--------------	-------	----	-------	--------	--------	-------------

Figure 3. Th	e chromatogram of the	GC-MS analysis of	the species Conyza be	onariensis
	Table 5. GC-MS (of the species <i>Conv</i> z	a canadensis	

PEAK	CHEMICAL	RETENTION	AREA%	MOLECULAR	MOLECUL	CHEMICAL
NO.	COMPOUNDS	TIME (MIN.)	100%	FORMULA	AR	CLASSIFICAT
					WEIGHT (C/MOL)	ION
1	3-Hexanone	7.728	1.96	C ₆ H ₁₂ O	100.16	Ketone
2	Oxirane, 2-ethyl-3-propyl-, cis-	8.145	1.33	C ₇ H ₁₄ O	114.19	Organoheteroc yclic compounds
3	Nonane	11.671	0.82	C ₉ H ₂₀	128.25	Alkane
4	(1R)-2,6,6-Trimethylbicyclo [3.1.1] hept-2-ene	13.266	1.16	$C_{10}H_{16}$	136.234	Alkene
5	2,5-cyclohexadien-1- one,2,6-bis (1 ,1- dimethylethyl)-4- methylene-	38.150	15.65	C ₁₅ H ₂₂ O	218.33	Unsaturated cyclic ketone
6	2-Heptadecanone	54.096	3.07	C ₁₇ H ₃₄ O	254.45	Ketone
7	p-Camphorene	56.840	3.42	$C_{20}H_{32}$	272.468	Terpens
8	Docosanoic acid, docosyl ester	59.983	0.1	$C_{44}H_{88}O_2$	649.168	Carboxylic acid
9	Eicosyl isopropyl ether	60.372	0.81	C ₂₃ H ₄₈ O	340.6	Ether
10	Di-(2-ethylhexyl) phthalate	63.161	15.03	$C_{24}H_{38}O_4$	390.6	Aldehyde or diester of phthalic acid
11	(22-z)-dehydrocholesterol- 1-ether	67.344	29.26	C ₂₈ H ₄₆ O	398.7	Ether
12	Tetrahydrofuran-2- carboxylic acid, dibenzofuran-3-ylamide	71.419	27.39	C ₁₇ H ₁₅ NO ₃	281.3	Amide

Figure 4. The chromatogram of the GC-MS analysis of the species *Conyza canadensis* Table 6. GC-MS of the species *Launaea mucronata*

PEA K NO.	CHEMICAL COMPOUNDS	RETENTION TIME (MIN.)	AREA % 100%	MOLECULA R FORMULA	MOLEC ULAR WEIGHT	CHEMICAL CLASSIFICATI ON
1	3-Hevanone	7 734	1 93	C.H.,O	100 16	Ketone
2	1,1-Difluorooctane	8.151	1.15	$C_8H_{16}F_2$	150.21	Haloalkane or alkyl halide
3	Nonane	11 671	0.9	CaHaa	128 25	Alkane
4	Decane	16.112	1.37		142.28	Alkane
5	2,5-cyclohexadien-1-one,2,6-bis (1 .1-dimethylethyl)-4-methylene-	38.156	4.4	$C_{15}H_{22}O$	218.33	Unsaturated cvclic ketone
6	2-Heptadecanone	54.073	2.02	C17H24O	254.5	Ketone
7	Hexadecanoic acid.methyl ester	54.828	2.21	$C_{17}H_{34}O_{2}$	270.5	Ester
8	Hexadecanoic acid ,2-	57.245	2.69	$C_{36}H_{72}O_3$	553	Ester
0	Decence 2.9 dimethyl	60 292	1 21	СЧ	170 22	Alleno
9	2 Totrodocanol	00.383 60 577	1.51	$C_{12}\Pi_{26}$	21/0.33	Alcohol
10	2- Ieu auccanol Figosyl isopropyl othor	62 266	0.02	$C_{14}\Pi_{30}O$	214.39	Alconol
12	cis-3,3a,4,5,6,7-Hexahydro-7-(2- thienvl) cvclohexa[clisoxazole	64.829	9.33 5.6	$C_{23}H_{48}O$ $C_{11}H_{13}NOS$	207.29	Heterocyclic compound
13	Nonacosane	66.235	33.19	C20H60	408.8	Alkane
14	2H-3,9a-Methano-1-benzoxepin, octahydro-2,2,5a,9-tetramethyl-, [3R-(3. alpha.,5a. alpha9.alpha.,9a. alpha.)l-	67.801	8.03	$C_{15}H_{26}O$	222.366	Cyclic ether
15	Fumaric acid,4-cyanophenyl dodecyl ester	68.327	3.88	$C_{23}H_{31}NO_4$	385.5	Ester
16	Tetracosane	69.190	12.97	C24H50	338.7	Alkane
17	i-Propyl 9-octadecenoate	70.116	8.4	$C_{21}H_{40}O_2$	324.54	Ester

Figure 5. The chromatogram of the GC-MS analysis of the species *Launaea mucronata* Table 7. GC-MS of the species *Senecio glaucus*

	Table 7. OC-MB of the species benetic guardis							
PEAK	CHEMICAL COMPOUNDS	RETENTION	AREA%	MOLECULA	MOLECUL	CHEMICAL		
NO.		TIME (MIN.)	100%	R FORMULA	AR	CLASSIFICAT		
					WEIGHT	ION		
					(G/MOL)			
1	3-Hexanone	7.728	3.46	$C_6H_{12}O$	100.16	Ketone		
2	2,5-Cyclohexadien-1-one, 2,6-	38.151	32.96	C ₁₅ H ₂₂ O	218.33	Unsaturated		
	bis(1,1-dimethylethyl)					cyclic ketone		
3	Nonadecane	53.993	2.95	C19H40	268.5	Alkane		
4	Eicosane, 9-octyl-	57.245	2.53	C ₂₈ H ₅₈	394.8	Alkane		
5	2- 2-Octadecyloxy-1,1,2,2- tetradeuteroethanol	59.972	26.22	$C_{20}H_{42}O_2$	318.6	Ether alcohol		
6	Eicosane	60.389	1.97	$C_{20}H_{42}$	282.5	Alkane		
7	Iron, tricarbonyl [(2,3,4, 5- .eta.)-2,3,4,5-tetrahydroxy-2,4- cyclopentadien-1-one]-	62.772	2.06	C ₈ H ₄ FeO ₈	283.957	Organometallic compound		
8	Nonyl docosanoate	67.001	10.09	$C_{31}H_{62}O_2$	466.8	Ester		
9	2,2,4,5-Tetramethyl-6-(1- methyloctadecyl)-1,3-dioxan	67.573	8.61	$C_{27}H_{54}O_2$	410.7	Saturated cyclic ether compound		
10	Benzo[a]heptalen-9(5H)-one, 6,7-dihydro-1,2,3,10- tetramethoxy-7-(methylamino)- , (S)-	68.219	9.15	C ₂₁ H ₂₅ NO ₅	371.4	Polycyclic aromatic ketone		

Figure 6. The Chromatogram of the GC-MS analysis of the species Senecio glaucus

	Table 8. GC-MS of the species Sonchus asper							
PEAK NO.	CHEMICAL COMPOUNDS	RETENTION TIME (MIN.)	ÂREA% 100%	MOLECULAR FORMULA	MOLECUL AR- EIGHT (G/MOL)	CHEMICAL CLASSIFICAT ION		
1	3-Hexanone	7.734	2.03	C ₆ H ₁₂ O	100.16	Ketone		
2	Hydrazinecarboxaldehyde,meth ylpropylidene-,(Z)-	8.151	1.29	$C_5H_{10}N_2O$	114.15	Hydrazone		
3	Nonane	11.677	0.93	C ₉ H ₂₀	128.25	Alkane		
4	Decane	16.112	1.28	$C_{10}H_{22}$	142.28	Alkane		
5	2,5-cyclohexadien-1-one,2,6-bis (1 ,1-dimethylethyl)-4- methylene-	38.156	10.91	C ₁₅ H ₂₂ O	218.33	Unsaturated cyclic ketone		
6	Nonadecane	53.999	2.03	C ₁₉ H ₄₀	268.5	Alkane		
7	1,2-Benzenedicarboxylic acid,bis(2-ethylhexyl)ester	54.788	2.24	$C_{24}H_{38}O_4$	390.56	Ester		
8	Eicosane	60.383	42.55	$C_{20}H_{42}$	282.5	Alkane		
9	Eicosyl isopropyl ether	62.578	7	C ₂₃ H ₄₈ O	340.6	Ether		
10	Ethanone,1,1'-[3,3'-biisoxazole]- 5,5'-diylbis-	63.338	14.15	$C_{10}H_8N_2O_4$	220.048	Diketone		
11	Fumaric acid,2-decyl tridecyl ester	66.236	15.59	$C_{27}H_{50}O_4$	438.68	Ester		

Figure 7. The chromatogram of the GC-MS analysis of the species Sonchus asper Table 9. GC-MS of the species Sonchus tenerrimus

PEAK	CHEMICAL	RETENTION	AREA%	MOLECULA	MOLECUL	CHEMICAL
NO.	COMPOUNDS	TIME (MIN.)	100%	R FORMULA	ARW-	CLASSIFICATI
					EIGHT	ON
					(G/MOL)	
1	Nonane	11.671	1.28	CH ₃ (CH ₂) ₇ CH	128.26	Alkane
				3		
2	2,5-cyclohexadien-1-	38.156	6.86	C ₁₅ H ₂₂ O	218.33	Unsaturated
	one,2,6-bis (1 ,1-					cyclic ketone
	dimethylethyl)-4-					•
	methylene-					
3	2-Heptadecanone	54.096	2.14	$C_{17}H_{34}O$	254.45	Ketone
4	Eicosyl isopropyl ether	63.361	6.69	C ₂₃ H ₄₈ O	340.6	Ether
5	Stigmasterol	67.527	52.9	C29H ₄₈ O	412.7	Steroid
	-					
6	(22-z)-dehydrocholesterol-1-	70.476	30.13	C ₂₈ H ₄₆ O	398.66	Ether
	ether					

Figure 8. The chromatogram of the GC-MS analysis of the species *Sonchus tenerrimus*

HCA dendrogram analysis

The agglomerative hierarchical clustering analysis dendrogram was generated for eight taxa of Asteraceae based on 81 chemical compounds, gained by Euclidean distance using Ward's method. The dendrogram reveals two clusters graphically. The horizontal axis (Rescaled distance) represents the distance or difference between groups, and the dissimilarity within the interval is 5; the greater distance is the difference between the groups that are being merged. The vertical axis represents the studied species and the horizontal lines represent the process of merging groups. Each horizontal line indicates the merging of two groups into one larger group, and the horizontal line height represents the extent of the difference between the two merged groups. The higher line means the greater difference between the two groups. The (HCA) dendrogram illustrated in Figure 9 presents a significant correlation between the systematic classification and the chemical information as the Carthamus tinctorius (belongs to the cynareae tribe) is the most divergent species, as it combines at a very late stage of the analysis, indicating that it differs significantly from the other species. The dendrogram also showed a divergence between the two Conyza species (despite both species belonging to the Astereae tribe). However, they showed greater affinity to Launaea mucronata (Cichorieae tribe), which may be attributed to the fact that these species are phytoaccumulators and the presence of the compound (DEHP), which is plasticizer material in the Convza canadensis is collected from a cultivated region from Baghdad, and the compound DL-Glutamic-2-d acid, Nacetyl-, dimethyl ester (C₉H₁₄2DNO₅) that (D) containing Deuterium in Convza bonariensis which is collected from a wild region in Baghdad University campus, may indicate the role of these plants in phytoremediation, the studies have been shown that localities and environmental conditions significantly influence the phytochemical composition of these plants, resulting in comparable adaptive traits (23,27). On the other hand, Centurea iberica (Cardueae tribe) shows a close relation to Conyza bonariensis. Along with (35), the significant relations can be interpreted in understanding the biochemical origins of polymorphism in a plant species.

Figure 9. HCA Dendrogram of eight species of Asteraceae by using Ward's method REFERENCES: polygonaceae. IJAS, 51(6) 1517-15

1.A. A. Al-Khalaf, I. Alabdelkareem, S. S. Al-Rejaie, M. Mohany, and W. N. Hozzein 2022. Molecular docking studies on methanolic propolis extracts collected from different regions in Saudi Arabia as a potential inhibitor of topoisomerase IIβ. Separations, 9(12): 392.<u>https://doi.org/10.3390/separations912039</u> 2.

2.Abd-ElGawad A. M, Y. A.El-Amier, A. M. Assaeed, and S. L. Al-Rowaily 2020. Interspecific variations in the habitats of *Reichardia tingitana* (L.) Roth leading to changes in its bioactive constituents and allelopathic activity. Saudi J Biol Sci, 27 (No.):489–499.

https://doi.org/10.1016/j.sjbs.2019.11.015

3.Abdulla, H.J., 2019. Manifestations of climate change in Baghdad Area. Al-Mustansiriyah Journal of Science, 30(4):39-42. https://doi.org/10.23851/mjs.v30i4.657

4.Ahmed, S. H., Jamil, K. B., Ahmed, F. H., Muttlib, H. S., Ibrahim, T. Y., and Al-Newani, H. R. H. 2023. Study of the Antioxidant and Anti-Cancer Activity and Biological Activity of (*Punicagranatum* L.) Extract on Pathogenic Microorganisms Using Alkaline Energy Water. South Asian Research Journal of Biology and Applied Biosciences,5(2):41-46.

https://doi.org/10.36346/sarjbab.2023.v05i02.0 05

5.Al-Newani, H. R. 2019. Systematics significance of morphological and anatomical diversity of *portulaca oleracea*. IJAS, 50(5) 1383-1389.

https://doi.org/10.36103/ijas.v50i5.805

6.Al-Newani, H. R. H., S. A. Aliway, and R. K. H. A. Al-Masoudi, 2020. The taxonomical significant of computerd phylogenetic analysis and morphological data in some species of

polygonaceae. IJAS, 51(6) 1517-1524. https://doi.org/10.36103/ijas.v51i6.1179

7.AlShammari, A. M., 2016. Environmental pollutions associated to conflicts in Iraq and related health problems. Reviews on environmental health,31(2), pp:245-250. https://doi.org/10.1515/reveh-2015-0024

8.Aslam, H., A. Khan, H. Naureen, F. Ali, F. Ullah, and A. Sadiq, 2018. Potential of application Convza canadensis (L) Cronquist in the management of diabetes: In vitro and in vivo evaluation. Tropical Journal of Pharmaceutical Research, 17(7):1287-1293. http://dx.doi.org/10.4314/tjpr.v17i7.9

9.Catinella, G., N. Badalamenti, V. Ilardi, S. Rosselli, L. De Martino, and M. Bruno 2021. The essential oil compositions of three Teucrium taxa growing wild in Sicily: HCA and PCA analyses. Molecules, 26:(3) 643. https://doi.org/doi.org/10.3390/molecules2603 0643

10.Chaturvedi, S. and I. P. Sarethy 2021. Virtual screening of compounds from microcolonial fungal strain TD-062 obtained from the thar desert of India. Current Trends in Biotechnology and Pharmacy,15(6):62–66. https://doi.org/10.5530/ctbp.2021.6.12

11.Cubukcu, K. M., and T. Hatcha 2016. Are euclidean distance and network distance Related? Environment-Behaviour Proceedings Journal, 1 167–175.

https://doi.org/10.21834/e-bpj.v1i4.137

12.Dhami, N. and A. D. Mishra 2015. Phytochemical variation: how to resolve the quality controversies of herbal medicinal products? Journal of Herbal Medicine, 5(2):118–127.

https://doi.org/10.1016/j.hermed.2015.04.002

13.El-Kalamouni, C., P. R. Venskutonis, B. Zebib, O. Merah, C. Raynaud and T. Talou

2017. Antioxidant and antimicrobial activities of the essential oil of *Achillea millefolium* L. grown in France.Medicines,4(2):30. https://doi.org/10.3390/medicines4020030

14.Gunda, H. J., A. M. Yelwa, A. A. Shehu, and M. M. Idris 2021. Isolation and characterization of bioactive compound from stem bark extract. Bayero Journal of Pure and Applied Sciences,13(1):130–137.

http://dx.doi.org/10.4314/bajopas.v13i1.18

15.Haider, N. H., 2024. The antibacterial activity of glycolipopeptide produced from *Lactococcus lactis* HN21 against some clinical pathogens in combined with some standard antibiotics. Iraqi Journal of Agricultural Sciences, 55(Special Issue): 12-24. https://doi.org/10.36103/ijas.v55iSpecial.1881

16.Hamodie, M. A., 2018. *Stachys Babylonica* (Lamiaceae), A New Endemic Species from Iraq and Related Studies for This Species. Al-Mustansiriyah Journal of Science, 29(4):14-22. https://doi.org/10.23851/mjs.v29i4.295

17.Hamza, R. G., Muhammed Salih, R.H. and Ahmad, N. S., 2024. Delimitation of Iraqi *Scorzonera* L. (Cichorieae, Asteraceae) species in Sulaimani District (MSU), Kurdistan Region, based on morphological characterization. Passer Journal of Basic and Applied Sciences, 6(1), pp:115-123. https://doi.org/10.24271/PSR.2023.419571.14

<u>02</u>

18.Hashim, H. A., Mohammed, M. T., Thani, M.Z. and Klichkhanov, N.K., 2024. Determination of Vitamins, Trace Elements, and Phytochemical Compounds in *Boswellia Carterii* Leaves Extracts. Al-Mustansiriyah Journal of Science, 35(2):9-17.

https://doi.org/10.23851/mjs.v35i2.1366

19.He, C., Y. Li,C. Li, Y. Wang, Z. Xu, S. Zhong, Z. Xu, Y. Yu, D. Du, and C. Wang 2023. Photosynthetic capacity of Erigeron canadensis L. may be more critical to its growth performance than photosynthetic area. Biologia, 78(5): 1315–1321.

https://doi.org/10.1007/s11756-023-01317-6

20.Jassim, A. H., and H. R. Al-Newani 2023. Chemotaxonomy significant in delimitation of six taxa of euphorbia L. in Iraq. IOP Conference Series: Earth and Environmental Science, 1262(5):

052019.<u>https://doi.org/10.1088/1755-</u>1315/1262/5/052019

21.Kim, J., O. Y. Kang, S. Kim, G. Issabayeva, I. Oh, Y. Lee, W. Lee, H. J. Lim, and S. Park 2020. Synthesis and properties of pentafluorosulfanyl group (SF5)-containing meta-diamide Insecticides. Molecules, 25(No.): 5536.

https://doi.org/10.3390/molecules25235536

22.Kselíková, V., M. Vítová, and K. Bišová 2019. Deuterium and its impact on living organisms. Folia Microbiologica,64,(No.):673-681. <u>https://doi.org/10.1007/s12223-019-</u> 00740-0

23.Lis, A., J. R. Piggott, and J. Góra 2003. Chemical composition variability of the essential oil of *Conyza canadensis* Cronq. Flavour and fragrance journal, 18(5):364-367. https://doi.org/10.1002/ffj.1177

24.Lyons, W. C. and Plisga, G. J.2011. Standard Handbook of Petroleum and Natural Gas Engineering. 2 Edition, Elsevier, Gulf Professional Publishing. pp: 2–177. https://doi.org/10.1016/B978-0-7506-7785-1.X5011-8

25.Mallhi, T. H., M. I. Qadir, and Y. H. Khan 2018. Determination of phytoconstituents of nhexane extract of leaves of *Morus nigra* and evaluation of their effects on biochemical and histopathological parameters in paracetamol intoxicated mice liver. NIFOJ,30(2):51–56. http://dx.doi.org/10.1590/s2175-

97902018000318101

26.Mijangos Ricárdez, O. F., J. Ruiz-Jiménez, L. Lagunez-Rivera, and M. D. Luque de Castro, 2011. Fast Ultrasound-assisted Extraction of Polar (phenols) and Nonpolar (lipids) Fractions in *Heterotheca inuloides* Cass. Phytochemical Analysis, 22(6):484–491. https://doi.org/10.1002/pca.1305

27.Mostafa, E. M., A. H. El-Ghorab, M. M. Ghoneim, H. A. Ebrahim, M.A. Abulfaraj, M. A., Farouk and A. Musa 2023. Cytotoxic and antioxidant potential of *Launaea mucronata* Forssk essential oil growing in Northern Saudi Arabia. Molecules, 28(20) 7025.

https://doi.org/10.3390/molecules28207025

28.Murtagh, F., and P. Contreras, 2012. Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2(1):86–97.

https://doi.org/10.1002/widm.53

29.Park, J. U., B. Y. Kang, H-J. Lee, S. Kim, D. Bae, J.-H. Park, and Y. R. Kim 2017. Tetradecanol reduces EL-4 T cell growth by the down regulation of NF- κ B mediated IL-2 secretion. European Journal of Pharmacology, 799 (No.): 135–142.

https://doi.org/10.1016/j.ejphar.2017.02.002

30.R. L. Clark, F. M. Deane, N. G. Anthony, B. F. Johnston, F. O. McCarthy, and S.P. Mackay 2007. Exploring DNA topoisomerase I inhibition by the benzo [c] phenanthridines fagaronine and ethoxidine using steered molecular dynamics. Bioorganic & Medicinal Chemistry,15(14):4741–4752.

https://doi.org/10.1016/j.bmc.2007.05.002

31.Rolnik, A. and B. Olas 2021. The plants of the Asteraceae family as agents in the protection of human health. Int J Mol Sci.16(22):3009.

https://doi.org/10.3390/ijms22063009

32.Rowdhwal, S. S. S. and J. Chen 2018. Toxic Effects of Di-2-ethylhexyl Phthalate: An Overview. BioMed Research International,(No.): 1-10.

https://doi.org/10.1155/2018/1750368

33.Sadeq, Z.G. and Aliwy, S.A., 2019. Micromorphology study of pollen grains and cypsela of seven selected species, belong to Asteraceae Family in Al-Jadriya campus. The Iraqi Journal of Agricultural Science, 50(3):1138-1152. https://doi.org/10.36103/ijas.v50i4.758

34.Saleh-E-In, M. M., P.Bhattacharyya, and J. Van Staden 2021. Chemical composition and cytotoxic activity of the essential oil and oleoresins of in vitro micropropagated *Ansellia africana* Lindl: A vulnerable medicinal orchid of Africa. Molecules, 26(15): 4556.

https://doi.org/10.3390/molecules26154556

35.Semmar, N., J, Mauric and N. Saïd 2007. A new approach to graphical and numerical analysis of links between plant chemotaxonomy and secondary metabolism from HPLCdata smoothed by a simplex mixture design. Chemoecology. 17(3): 139-155.

https://doi.org/10.1007/s00049-007-0374-z

36.Shaikh, J. R. and Patil, M., 2020. preliminary Oualitative tests for phytochemical screening: An overview. International Chemical Journal of Studies,8(2):603-608.

https://doi.org/10.22271/chemi.2020.v8.i2i.88 34

37.Sharma. S., and A. Alam 2023. Identification secondary of metabolites, antioxidant activity, and GC-MS analysis of procumbens (Roxb.) Launaea Amin (Angiosperm: Asteraceae): A neglected plant with therapeutic value. Natural Resources for Human Health, 3 No. 462-468.

https://doi.org/10.53365/nrfhh/174619

38.Sukeyna A. A., G. A. Lobab, and H. R. H. Al-Newani 2023. Comparative taxonomical study for reproductive part of eight species belong to brassicaceae family in Iraq. IJAS, 54(1) 25-31.

https://doi.org/10.36103/ijas.v54i1.1673

39.Tastan, P., T. Fafal, B. S. Tüzün, T. Gönenç, B. Demirci, and B. Kivcak 2017. Composition of essential oil and fatty acids of *Centaurea pichleri* ssp. *pichleri*. International Journal of Secondary Metabolite, 4(3,Special Issue1):37– 42. <u>https://doi.org/10.21448/ijsm.356269</u>

40.Umoh, O.T. 2020. Chemotaxonomy: The Role of Phytochemicals in Chemotaxonomic Delineation of Taxa. Asian Plant Research Journal, 5(1), 43-52.

https://doi.org/10.9734/APRJ/2020/v5i130100

41.Y. Zou, Y. Teng, J. Li, and Y. Yan 2024. Recent advances in the biosynthesis of coumarin and its derivatives. Green Chemical Engineering, 5(2): 150–154.

https://doi.org/10.1016/j.gce.2023.04.003