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ABSTRACT 
Agrivoltaic systems, which integrate agricultural production with solar energy generation, present a promising 

approach to ecological sustainability. This study focuses on predicting chili harvests within an agrivoltaic setup 

using Convolutional Neural Networks (CNN) with transfer learning. Accurate yield prediction is vital for 

optimizing both agricultural output and energy generation. The study evaluates three pre-trained CNN 

models—EfficientNetV2L, EfficientNetV2M, and ResNet 50—fine-tuned with specific agrivoltaic data. The 

experimental setup includes a solar-powered greenhouse with IoT-controlled micro-climate management to 

ensure optimal growing conditions. The models were selected based on their high accuracy in Keras applications, 

with EfficientNetV2L and ResNet 50 achieving 100% accuracy, and EfficientNetV2M reaching 96% in chili crop 

counting. The results show quick convergence during training and validation, indicating effective model 

learning. The study also includes a life cycle analysis (LCA), confirming that using photovoltaic systems as a 

substitute for conventional energy sources is environmentally sustainable. Overall, this research demonstrates 

that CNN transfer learning is highly effective for crop counting and resource management, contributing to 

sustainable agrivoltaic farming and highlighting the potential of advanced AI techniques in agriculture. 

Keywords: Agrivoltaic systems, Convolutional Neural Networks (CNN), Chili harvest prediction, Sustainable 

agriculture, Transfer learning.  

 واخَرونا أوكتارين                                                                           1926-1910(:6(55: 2024 -مجلة العلوم الزراعية العراقية

نحو الاستدامة البيئية  : ية تنبؤ حصاد الفلفل في الأنظمة الزراعية الفلطائية باستخدام التعلم المنقول عبر الشبكات العصب
 (CNN) الالتفافية 

 2تريسنا ديوي              1بَكْتي يُودهو سُوبرابتو          1زين الدين نواوي                *1,2يورني أوكتارينا
 محاضر                      أستاذ مشارك                    أستاذ                           طالب                

 لمرحلة الدكتوراه، جامعة سريويجايا، إندونيسيا قسم الهندسة .1
 قسم الهندسة الكهربائية، بوليتكنيك نيجيري سريويجايا، إندونيسيا .2

 المستخلص
تركز هذه  .الأنظمة الزراعية الفلطائية، التي تدمج الإنتاج الزراعي مع توليد الطاقة الشمسية، تقدم نهجًا واعدًا لتحقيق الاستدامة البيئية

يُعد  .مع التعلم المنقول  (CNN)اسة على التنبؤ بمحاصيل الفلفل الحار في نظام زراعي فلطائي باستخدام الشبكات العصبية الالتفافية الدر 
 :مدربة مسبقًا CNN تقيم الدراسة ثلاثة نماذج .التنبؤ الدقيق بالإنتاج ضروريًا لتحسين كل من الإنتاج الزراعي وتوليد الطاقة

EfficientNetV2L و EfficientNetV2M وResNet 50والتي تم ضبطها باستخدام بيانات محددة لنظام الزراعة الفلطائية ،. 
يتضمن الإعداد التجريبي دفيئة تعمل بالطاقة الشمسية مع إدارة مناخية دقيقة يتم التحكم بها عبر إنترنت الأشياء لضمان ظروف نمو 

دقة  ResNet 50 و EfficientNetV2L ، حيث حقق كل من Kerasالعالية في تطبيقات  تم اختيار النماذج بناءً على دقتها .مثالية
أظهرت النتائج تقاربًا سريعًا أثناء التدريب  .في عملية عد محصول الفلفل  EfficientNetV2M 96%، في حين بلغت دقة%100بنسبة 

، مما يؤكد أن استخدام الأنظمة الفلطائية (LCA)ل دورة الحياة كما تتضمن الدراسة تحلي .والتحقق، مما يشير إلى فعالية تعلم النماذج
فعال للغاية في  CNNبشكل عام، توضح هذه الدراسة أن التعلم المنقول باستخدام  .كبديل لمصادر الطاقة التقليدية هو أمر صديق للبيئة

الضوء على إمكانيات تقنيات الذكاء الاصطناعي المتقدمة عد المحاصيل وإدارة الموارد، مما يسهم في الزراعة الفلطائية المستدامة ويسلط 
 .في الزراعة

(CNN) ، توقع حصاد الفلفل الحار، المستدامة، التعلم الزراعة الكلمات المفتاحية: أنظمة الزراعة الشمسية، الشبكات العصبية التلافيفية  
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INTRODUCTION 

The agricultural sector is undergoing a 

transformative change that is driven by the 

integration of advanced technologies to 

setback addressed by Kamaludin et al. (22) 

and von Groß et al. (39). This problem is 

occurring not only in Indonesia but also 

around the world, as discussed by Edita and 

Dalia and Msangi et al. (12,28). Agrivoltaic 

farming, which integrates agricultural 

activities with solar energy production, is a 

promising practice as presented by Almaenny 

in 2018 (1), Mohammed in 2018 (27), Rusol 

and Al-Timimi in 2023 (31). By enabling the 

dual use of land, agrivoltaic systems offer a 

solution to the competing demands for 

agricultural land and renewable energy 

infrastructure. Chili farming, a staple crop in 

many regions, is an ideal context to explore 

the ecological advantages of this approach. 

However, optimizing yields in agrivoltaic 

systems presents unique challenges requiring 

advanced predictive techniques as presented 

by Oktarina et al.(29,30) Solar energy use in 

agriculture is consistent with the government's 

policy of increasing the mix of renewable 

energy use by 2030. Solar energy is abundant 

in Indonesia which is near the equator, and has 

tropical weather ideal for harvesting solar 

energy, (11,21,22,34,35). One method of 

incorporating technology in agriculture is to 

build a greenhouse, which can be adjusted 

according to plant needs and is pest-free, as 

presented by Collado et al. and Yoo et al. 

(7,40). Greenhouse technology can be used 

instead of conditioned agriculture to increase 

agricultural output. Smart farming can be an 

automatic greenhouse with a controlled 

climate to increase crop yield, (24,25) or the 

implementation of robotics, (8,9,10,36) and 

other automation. Agrivoltaic smart farming 

takes the monitoring concept a step further by 

incorporating advanced technologies such as 

Internet of Things (IoT) devices, sensors, and 

machine learning algorithms to optimize 

farming practices. This integration enables 

precise monitoring and management of 

agricultural inputs, leading to increased 

efficiency and sustainability. Smart agriculture 

integrates artificial intelligence (AI) in 

agricultural systems. The part of AI most 

suitable for predictions is neural networks 

through machine learning training, where 

farmers can estimate how much to harvest 

through growth predictions, Chamara et al.(5), 

plant disease detection, Arsenovic et al. (2), 

Ferentino (13), Fuentes et al. (14), Kerkech et 

al. (23), maturity detection, Begum et al. (4), 

and crop counting Chlingaryan et al. (6). 

Shaikh et al. (35), Attri et al. (3), and Javaid et 

al. (19) reviewed the method of machine 

learning and AI implementation in agriculture. 

Farming production can be predicted by a 

method called crop counting, which counts 

how many crops are detected in a plant, and 

from this detection, farmers can calculate the 

current agricultural yield (24). Crop counting 

is part of farm planning and management. 

Planning and management using AI also 

includes scheduling and logistics to estimate 

harvest yields. Chamara et al. (5) implemented 

deep learning CNN for crop monitoring, 

Chamara et al., and Li et al. (5,26) designed a 

strawberry R-CNN method to count 

strawberries. Harvest yield predictions provide 

helpful information for crop quality control by 

monitoring crop health and detecting disease 

symptoms early to avoid crop failure. Digital 

crop counting can be challenging because it 

requires image categorization and detection of 

plants that vary in shape and color. The image 

data taken is also greatly influenced by 

lighting due to weather, the angle at which the 

photo is taken, and the camera quality used, 

not to mention if branches and foliage obscure 

the intended crop object, Veramendi et al. (38) 

used SVM for maize plant counting and crop 

evaluation with accuracy from 0.68 to 0.85. 

Conventional image processing approaches 

based on shallow learning are insufficient for 

effective detection, necessitating the 

implementation of a Convolution Neural 

Network (CNN) with deep learning features 

that can learn image characteristics 

independently during the data training process, 

such as Zhang and Li (41) counted lettuce 

using YOLOv5 and Huang et al. (17) 

investigated the application of deep learning in 

crop counting. CNN has the ability to capture 

complex patterns and structure images, such as 

the varying position of crops inside an image, 

and it has the ability to share the convolutional 

layers, which reduces the number of 

parameters required. Big datasets are crucial 
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for effective results, but producing big datasets 

takes work for farmers. Hence, one of the best 

features of CNN is transfer learning, which 

can overcome the requirement of big data by 

integrating small data with big datasets pre-

trained by previous researchers. Transfer 

learning, a technique where a pre-trained 

model is adapted to a new but related task, 

presents a particularly advantageous approach 

for enhancing crop yield predictions. Transfer 

learning models are varied and assessable 

through Keras Application. The user-friendly 

library helps farmers to implement this 

method. Among the well-known models is 

EfficientNet, introduced by Tan (37) and 

adopted by Himel et al. (16) to identify sheep 

breeds in low-resolution images with an 

accuracy of more than 0,85 and even 1. 

EfficientNetV2M and EfficientNetV2L are 

smaller and faster variants of EfficientNet 

models developed by Tan and Le (37). This 

study proposed to develop and evaluate a 

CNN-based transfer learning model to predict 

chili harvests in an agrivoltaic system. The 

early hypothesize states that implementing 

CNN transfer learning will significantly 

enhance the accuracy of harvest predictions, 

thereby contributing to more efficient and 

ecologically sustainable farming practices. Our 

research seeks to optimize chili production and 

illustrate the broader potential of combining 

advanced AI techniques with innovative 

agricultural practices to promote ecological 

sustainability. This paper presents a 

comparative analysis of three transfer learning 

models: RestNet50, EfficientNetV2M, and 

EfficientNetV2L. The RestNet50 model is the 

earlier model developed by He et al. (15), 

which compares the latest EfficientNetV2 

models.  

MATERIAL AND METHODS 

This paper discusses the broader implications 

of the findings for agrivoltaic farming and 

agricultural sustainability. This research 

provides a comprehensive framework for 

integrating AI-driven solutions into sustainable 

agricultural practices, paving the way for more 

resilient, productive, and environmentally 

friendly farming systems. Hence, significant 

improvements in crop yield prediction can be 

achieved by integrating the ecological benefits 

of agrivoltaic systems with the advanced 

predictive capabilities of CNN transfer 

learning. This synergy of technologies holds 

great promise for the future of sustainable 

agriculture, aligning food production with 

environmental conservation and renewable 

energy objectives. The potential impact of this 

research is far-reaching, offering a 

comprehensive framework for integrating AI-

driven solutions into sustainable agricultural 

practices and paving the way for more 

resilient, productive, and environmentally 

friendly farming systems. The proposed 

method in this study is divided into 3 steps; 

agrivoltaics setting design, crop yield 

prediction method, and ecological assessment 

impact simulation.  

A- Agrivoltaic Setting Design: This paper 

proposes agrivoltaics setting design in 2 form, 

solar powered greenhouse and without 

greenhouse, both methods employ automatic 

irrigation and fertigation system.  However, 

the greenhouse leverages microclimate control 

integrated with IoT Monitoring. Modelling and 

Design of Micro-climate Automatic 

Monitoring System of a Greenhouse in 

Agrivoltaic Setting as presented in Fig. 1 

where the system is divided into the functions 

and the application.  

 
Fig 1.The proposed automatic agrivoltaic system 
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The IoT monitoring device records inputs from 

sensors installed in this agrivoltaic settings are 

soil sensors, ambient sensor, temperature 

sensor, and current and voltage sensor for PV 

system. The monitoring system functions as 

data storage, acquisition data, irrigation advice 

and data synchronization. This monitoring 

system is used to activate the devices that are 

pumps, exhaust fan, PV panels system, and 

battery. The system ensures the micro-climate 

system stays in ideal plant condition setting. 

 
Fig 2. Automatic Agrivoltaic Setting 

The Agrivoltaic setting considered in this study 

is given in Fig. 2. The automatic agriculture 

benefits from the solar energy where the 

micro-climate is controlled to meet the ideal 

environment for plants. The greenhouse system 

consists of (1) well, (2) irrigation system, (3) 

fogging system, (4) piping, (5) PV panels, (6) 

exhaust fan, (7) combiner box, (8) batteries, 

and (9) piping for fogging. Because the 

greenhouse is located in an area that is not 

served by clean water from the Regional 

Drinking Water Company, the well (1) is the 

primary water source in this greenhouse 

system. The  irrigation system (2) responsible 

for automatic watering system, while fogging 

system (3) is required to stabilize the micro-

climate inside the greenhouse. PV panels 

supply electricity converted from solar 

irradiance to power the electronics in the 

greenhouse (located inside the combiner box 

(8)). The batteries are the storage system that 

ensure the electricity is available during day 

and night, or sunny and cloudy weather. The 

current produced by the PV panels install on the 

greenhouse is given by (18)  

𝐈 =  𝐈𝟎 (
𝐪𝐕

𝐞𝐧𝐊𝐓
− 𝟏) − 𝐈𝐩𝐡, 

(1)  

where I is the generated current by a solar cell 

(A), Iph is light-generated current, I0  is the 

initial current, V is the voltage (V), enKT is the 

Botzmann factor, and k is the Boltzmann 

constant (1.380649 × 10
−23

 m
2
 kg s

-1
 K

-1
). The 

voltage supplied to the greenhouse is (18) 

𝐕𝐨𝐜 =
𝐧𝐊𝐓

𝐪
𝐥𝐧 (

𝐈𝐨𝐮𝐭

𝐈𝟎
+ 𝟏). (2)  

The solar panel efficiency (ɳ) is defined as the 

comparison between power input (Pin) and the 

generated power output (Pout) and is given as below 

(19): 

ɳ =
𝐈𝐦𝐩. 𝐕𝐦𝐩

𝐏𝐢𝐧
× 𝟏𝟎𝟎%. 

(3)  

The heat transfer model for the agrivoltaic setting 

considered in this study is adopting from Ma et al. 

(28), taking the factors affecting greenhouse 

climate shown in Fig. 3. The greenhouse’s indoor 

micro-climate is modelled by the greenhouse's 

indoor temperature, relative humidity, and CO2 

concentration (27) 

𝛒𝐚𝐢𝐫𝐜𝐚𝐢𝐫𝐯𝐚𝐢𝐫

𝐝𝐓𝐚𝐢𝐫

𝐝𝛕
= 𝐐𝐰𝐚𝐥𝐥 + 𝐐𝐬𝐨𝐢𝐥, 

(4)  

where ρair is the air density, cair is the air heat 

capacity, vair is the air volume inside 

greenhouse, Tair is air temperature,  Qwall is the 

heat convection between the greenhouse 
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plastic wall and air, and Qsoil is the heat 

convection between the soil and air (28). 

𝛒𝐚𝐢𝐫𝐜𝐚𝐢𝐫𝐯𝐚𝐢𝐫

𝐝𝐓𝐚𝐢𝐫

𝐝𝛕
= 𝐡𝐞𝐧𝐯𝐀𝐞𝐧𝐯(𝐓𝐞𝐧𝐯

− 𝐓𝐚𝐢𝐫)
+ 𝐡𝐬𝐨𝐢𝐥𝐀𝐬𝐨𝐢𝐥(𝐓𝐬𝐨𝐢𝐥

− 𝐓𝐚𝐢𝐫), 

(5)  

where Tenv is the temperature in the envelope 

(greenhouse temperature), and Tsoil is soil 

surface temperature. h and A are the 

convective heat transfer coefficient and areas 

(28).  

 
Fig 3.Heat transfer modeling in agrivoltaic setting 

Fig. 4 presents the design of micro-climate 

automatic monitoring system where soil 

humidity sensor is connected to Arduino that 

control the activation of pump and irrigation 

system inside the greenhouse. The sensor-

arduino system is connected to node MCU for 

internet connection and send to IoT interface 

with Node-RED application installed to 

farmer’s electronic devices such as phone, tab, 

or laptop. The benefits resulted from this 

automatic monitoring are better crop 

management, possible optimum growth rate 

due to near ideal climate and no pest 

condition, real time monitoring, better 

prediction for decision making, optimal water 

consumption, prevent plants disease, possible 

soil nutrient preservation, reduce resources, 

and cleaner and more efficient agricultural 

process. 

 
Fig. 4. Iot Monitoring Circuit Design 
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B- Crop Yield Prediction Method 

The proposed crop yield prediction method in this 

study is given in Fig. 5 which implements a 

Convolution Neural Network (CNN) to count the 

chili crop and predict the harvest yield. The 

transfer learning features can provide a small 

dataset to get accurate counting and can adjust the 

dataset; hence, can be employed to monitor crops 

across large agricultural areas. Transfer 

learning predicts crop yields by fine-tuning a 

pre-trained CNN model with images and 

environmental data specific to chili crops. The 

pre-trained model's ability to recognize 

relevant features from the images can 

significantly enhance the accuracy of yield 

predictions, leading to better resource 

management and improved agricultural 

sustainability. Data collection and Pre-

processing is shown in Fig. 5 where the dataset 

input to pre-trained models is from ImageNet 

which allows the model to learn a wide range 

of features, such as edges, textures, shapes, 

and patterns, which are useful for image 

recognition tasks. The transfer learning models 

implemented for crop counting in this study, as 

shown in Fig. 5, are RestNet50, 

EfficientNetV2M, and EfficientNetV2L. 

EfficientNetV2M and EfficientNetV2L are the 

latest EfficientNet models developed by Tan 

and Le in 2021, and the RestNet50 model is an 

earlier model developed by He et al. (15) to 

compare the latest EfficientNetV2 models.  

 
Fig. 5. The proposed CNN-transfer learning considered in this study 

EfficientNetV2L and EfficientNetV2M are the 

developments of EfficientNet, which has 

smaller models, faster training, and better 

parameter efficiency than previous 

EfficientNet. The M and L are medium and 

large to indicate the size of model 

implemented; therefore, EfficientNetV2L has 

more parameter and computationally larger 

than EfficientNetV2M. EfficientNetV2M and 

EfficientNetV2L are more variative in model 

size, accuracy, and computational efficiency; 

hence, ideal for crop counting which involves 

fine-tuned image classification. RestNet50 is a 

model with 50 layers consisting of 

convolution, pooling, and fully connected 

layers. The main novelty of the RestNet 

architecture is that it uses the residual 

connection or skip connection to residual 

mappings instead of directly learning the 

desired underlying mapping. Hence, it 

addresses the problem of vanishing gradients 

and enables the more effective training of very 

deep neural networks. Chili dataset in this 

study is shown in Fig. 6, consists of 200 

images as the small data to be trained by the 

transfer learning models. Images were 

captured by Webcam Logitech C920 with 

1920 × 1080 pixels. The distance between the 

camera and the object was 20 cm. The images 

were taken in various weather conditions.  
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Fig. 6. Illustration of chili dataset trained in this study 

The images for the dataset illustrated in Figure 

6 are collected from the chili grown in our 

agrivoltaics farm located in Gandus, South 

Sumatra, Indonesia (3.0073° S, 104.7197° E). 

The 200 images for small data training are 

uniformly named and labeled into three 

classes: Buah Cabai 2 (2 chilies), Buah Cabai 

3 (3 chilies), and Buah Cabai 6 (6 chilies), as 

shown in Table 1. The label was written in 

Indonesia, where Buah Cabai refers to chili. 

The six chilies class was chosen because there 

were at most six chilies on a single branch. It 

is assumed that if the proposed method 

correctly recognizes six chilies, it will be 

effective for four and five-chilies 

prediction/counting. The dataset is randomly 

partitioned into training, validation, and 

testing, as shown in Table 1. During data 

partition, the batch size is also decided to 

match the training process and expected 

outcome. Hyperparameter tuning, such as 

batch size, learning rate, and epoch in this 

paper, is given in Table 2. 

Table 1. Training and testing dataset 
Class Name Count Training Testing 

Buah cabai 2 300 200 100 

Buah cabai 3 300 200 100 

Buah cabai 6 300 200 100 

Table 2. Hyperparameter tuning 
Batch 

size 

Learning 

Rate 
Epoch 

Hidden 

layer 
Dropout 

16 0,001 100 256 0.4 

The steps of predicting crop are including 

import library, load pre-trained model, freeze 

layers, add custom layers (fine-tuning), 

compile the model, load and pre-process 

dataset, and train the model. Validation data is 

used to monitor the training process and 

prevent overfitting and evaluate the model to 

assess its performance. The activation 

considered in this study is ReLu in the input 

layers and SoftMax in the output layer. The 

pseudocode of the model training in this study 

is given by: 

a- EfficientNetV2L 

img_shape = (img_size[0],img_size[1] , 3) 

num_class = len(classes) 

base_model = tf.keras.applications. 

EfficientNetV2L(include_top = False , weights 

= 'imagenet'  

input_shape = img_shape, pooling= 'max') 

model = Sequential([ 

base_model 

BatchNormalization(axis= -1 , momentum= 

0.99 , epsilon= 0.001), 

Dense(512, kernel_regularizer = 

regularizers.l2(l= 0.016) , activity_regularizer 

= regularizers.l1(0.006), 

bias_regularizer= regularizers.l1(0.006) , 

activation = 'relu'), 

Dropout(rate= 0.4 , seed = 75),= 

b- EfficientNetV2M 

img_shape=(img_size[0],img_size[1],3) 

num_class = len(classes)= 

base_model = tf.keras.applications. 

EfficientNetV2M(include_top = False , 

weights = 'imagenet',                                                               

input_shape = img_shape, pooling= 'max') 

model = Sequential 

base_model 
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BatchNormalization(axis= -1 , momentum= 

0.99 , epsilon= 0.001), 

Dense(512, kernel_regularizer = 

regularizers.l2(l= 0.016),activity_regularizer = 

regularizers.l1(0.006), 

bias_regularizer= regularizers.l1(0.006) , 

activation = 'relu'), 

Dropout(rate= 0.4 , seed = 75), 

 Dense(num_class , activation = 'softmax') 

c- RestNet50 

img_shape=(img_size[0],img_size[1],3) 

num_class = len(classes) 

base_model = 

tf.keras.applications.ResNet50(include_top = 

False , weights = 'imagenet'  

input_shape = img_shape, pooling= 'max') 

model = Sequential 

 base_model 

BatchNormalization(axis= -1 , momentum= 

0.99 , epsilon= 0.001), 

Dense(512, kernel_regularizer = 

regularizers.l2(l= 0.016) , activity_regularizer 

= regularizers.l1(0.006), 

bias_regularizer= regularizers.l1(0.006) , 

activation = 'relu') 

Dropout(rate= 0.4 , seed = 75), 

Dense(num_class , activation = 'softmax') 

The transfer learning model performance can 

be assessed by accuracy, precision, Recall, and 

F1-score. Precision is defined as the ratio of 

chili images correctly labeled based on three 

set classes (Buah Cabai 2, Buah Cabai 3, and 

Buah Cabai 6) to the total number of correctly 

predicted images identified based on the 

number of chilies captured in those images. 

Precision is given as (15): 

 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐏
, 

(6) 

where TP is true positive (the number of cases 

where the model correctly predicts a number 

of chilies on an image) and FP is false positive 

(The model incorrectly predicts positive 

instances).  Recall is defined as the ratio of 

chilies correctly counted and the actual 

number of chilies in an image. The Recall, also 

known as Sensitivity of True Positive Rate, is 

given by (15): 

𝐑𝐞𝐜𝐚𝐥𝐥 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐍
. 

(7) 

 

 
F1-score is a measure that harmonizes 

Precision and Recall, which can be written 

as(15): 

𝐅𝟏𝐬𝐜𝐨𝐫𝐞 = 𝟐
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 ×  𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 +  𝐑𝐞𝐜𝐚𝐥
. 

(8) 

 

 
Accuracy is the overall performance of the 

model in predicting the number of chili crops 

in a given image. Accuracy can be presented 

as(15): 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐓𝐏 + 𝐓𝐍

(𝐓𝐏 + 𝐓𝐍)(𝐅𝐏 + 𝐅𝐍)
. 

(9) 

C- Ecological Impact Assessment 

Life Cycle Analysis (LCA) is a comprehensive 

method for assessing the environmental 

impacts associated with all stages of a 

product's life, from raw material extraction 

through to end-of-life disposal. In the context 

of agrivoltaic systems, LCA helps evaluate the 

sustainability of integrating photovoltaic (PV) 

solar panels with agricultural practices, 

focusing on aspects such as energy use, carbon 

emissions, water use, and overall ecological 

impact.  

 
Fig. 7. LCA block diagram of PV system to power the agrivoltaic system 
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The goal of this LCA is to assess the 

environmental impacts of an agrivoltaic 

system compared to traditional agricultural 

practices. This includes evaluating the energy 

and material inputs, operational efficiency, and 

the benefits of renewable energy integration. 

The LCA analysis in this study, which is 

illustrated in Figure 7, covers the PV panels 

installation, agricultural input (seeds, fertilizer, 

and harvesting), and operational (crop 

cultivation, energy generation, irrigation, and 

maintenance) phase. Since the agrivoltaics 

system is still running and in experimental 

phase, this study excludes decommissioning, 

recycling, and waste management.  

RESULT AND DISCUSSION 

This section presents and interprets the 

findings from the study on harvest prediction 

in agrivoltaic chili farming using 

Convolutional Neural Network (CNN) transfer 

learning, with a focus on ecological 

sustainability.  

A. Microclimate controlled greenhouse 

results: The main focus of this study is the 

automatic climate-controlled greenhouse and 

how the agrivoltaics system setting considered 

in this study is shown in Fig. 8 where A is the 

system outside greenhouse and B is the solar-

power greenhouse. Both A and B agrivoltaics 

system employ automatic irrigation and 

fertigation system. The main difference 

between both systems is that the greenhouse 

has the microclimate system controlled to meet 

the needs of chili or any plants inside the 

greenhouse. 

 
Fig. 8. PV system to power the agrivoltaic system 

The interface of IoT monitoring of micro-

climate of the considered agrivoltaic setting is 

given in Fig. 9 where the IoT monitoring 

shows the data given by sensor, watering 

system, fogging system, and water tank level. 

The monitoring data is updated online and 

giving the current situation of micro-climate to 

give the farmer update information.  

 
Fig. 9. IoT monitoring interface for the agrivoltaic system 
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Fig. 10. Irradiance for 1 week experiment 

The agrivoltaic system highly dependent on 

solar irradiance for supply the electronics and 

the micro-climate condition is highly affected 

by the weather. The irradiance during 1 week 

experiment is given in Fig 10. The high 

irradiance data shows the solar energy 

potential in Palembang. 

 
Fig. 11. Humidity data produced by soil humidity sensors inside greenhouse 

The irradiance data in Fig. 10 matches with the 

(1) and (2) where the more irradiance 

provided, the more electricity generated. The 

data results satisfy the mathematical modeling 

given in (3) and (4) showing that micro-

climate inside the agrivoltaic setting in this 

study can be controlled by proposed method in 

Fig. 1. 

 
Fig. 12. The illustration of crop counting results 
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Fig. 12 shows that the possible generated 

electricity annually is 1744.67 kWH/year 

which are more than enough to power the 

agrivoltaics system in this study. This result is 

simulated with irradiance data available from 

PVsyst Software.  

B. Crop Yield Prediction Results  

The chilies plant in this study is growing on 

our experimental farm located in the Gandus  

Sub-District in Palembang, Indonesia. The 

average temperature is 30
o
C, and tropical 

weather is ideal for chili growth. Chili is one 

of the favourite ingredients of Indonesia 

Cuisine. Chili is a very important ingredient, 

and there is no Indonesian main dish that can 

be cooked without chili. The images of chilies 

are categorized into 3 classes, and 3 transfer 

learning models are assigned to predict the 

crops.  

 
Fig. 13. The illustration of crop counting results 

Fig. 13 shows that images for the chili dataset 

considered in this study were captured from 

our chilies that are grew in our experimental 

farm, and the results is the crop counting as 

shown in Fig. 14 which system performance is 

given by confusion matrix, training and 

validation accuracy, training and validation 

loss, and finally the confusion matrix to show 

how effective the proposed method is.  

 
Fig. 14. Result of crop counting prediction with 3 transfer learning models 
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Fig.14 shows the result of crop counting 

prediction where the proposed method 

correctly counts the number of chili in an 

image, where Buah cabai 2 means 2 chilies, 

buah cabai 3 means 3 chilies, and buah cabai 6 

is 6 chilies. Fig. 15 presents the training and 

validation accuracy, where all the models 

show convergence between training and 

validation. Convergence is necessary to 

determine the point at which the training 

process reaches a stable state, and parameters 

such as weights and biases have reached the 

accurate prediction for the training data. 

Transfer learning creates faster convergence 

due to a pre-trained large dataset employed 

beforehand. The convergence in Fig. 15 also 

indicates that the training errors have stopped 

decreasing or have reached a minimum level 

of acceptable errors. The error, such as 

overfitting, is overcome by dropout.  

  
 

(a)  EfficientNetV2L (b)EfficientNetV2M (c) RestNet50 

Fig. 15. Training and validation accuracy results of 3 transfer learning models 

This study implements 100 epochs for all the 

models, and the best epoch for 

EfficientNetV2L is 4 (Fig. 15a), 

EfficientNetV2M is 6 (Fig. 15b), and 

RestNet50 is 8 (Fig. 15c), where the training 

and validation start to convergence. Overall, 

the performance, convergence, and 

generalization capability in the proposed 

method are proven effective by the results in 

Fig. 16. 

   
(a) EfficientNetV2L (b)EfficientNetV2M (c) RestNet50 

Fig. 16. Training and validation lost results of 3 transfer learning models 

Fig. 16 indicates the training and validation 

loss results of three transfer learning models. 

The best epoch for EfficientNetV2L is 100% 

(Fig. 16a), EfficientNetV2M is 99% (Fig. 

16b), and RestNet50 is 100% (Fig. 16c). The 

training and validation loss is zero, indicating 

that the model is learning effectively, which is 

proven by correct prediction in Fig. 16 and 

total performance analysis in Table 3. The 

total model performance evaluation is listed in 

Table 3, which shows that EfficentNetV2L 

and RestNet have an accuracy of 100%. 

EfficientNetV2M has lower accuracy due to 

the low dataset performance. During counting 

three chilies, EfficientNetV2M returns a result 

of zero because the three chilies are stacked 

together, and their hue is green, which is very 

similar to the leaves as shown in Fig 17, and 

this is also indicated by the underfitting in 

training and validation accuracy (Fig 15b). 

The tuning includes a drop of 0.4, and the seed 

is 75. 
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Table 3. Model performance evaluation 

Classes Model Precision Recall F1-Score Accuracy 

Buah Cabai 2 

EfficientNetV2L 1 1 1 1 

EfficientNetV2M 0.92 1 0.96 0.93 

RestNet50 1 1 1 1 

Buah Cabai 3 

EfficientNetV2L 1 1 1 1 

EfficientNetV2M 0 0 0 0.93 

RestNet50 1 1 1 1 

Buah Cabai 6 

EfficientNetV2L 1 1 1 1 

EfficientNetV2M 1 1 1 0.93 

RestNet50 1 1 1 1 

 

 
Fig. 17. chilies image 

Fig. 18. Confusion matrix results of 3 transfer learning models 
Note: Buah cabai 1 : 1 chili, Buah Cabai 2: 2 chilies, 

and Buah Cabai 6 are 6 chilies 

Fig. 18 shows the confusion matrix of three 

proposed models where the diagonal indicates 

the number of correctly classified and the off-

diagonal shows the misclassification. The 

confusion matrix is related to Table 1 of the 

model performance list. The overall 

performance or accuracy is 100%; hence, all 

the true labels and predictions are the same. 

The F1 score, which combines Precision and 

Recall, shows that it is 96% for 

EfficientNetV2M, and other models are 100%. 

The proposed model of transfer learning in this 

study has proven effective in predicting crop 

counting for chili harvest prediction.  

D- Life Cycle Analysis Simulation 

The LCA to demonstrate the environmental 

impact of agrivoltaics system considered in 

this study. The main environmental impact is 

during the process of controlling micro-

climate inside the solar-powered greenhouse; 

however, the agrivoltaics system plays 

important roles in ensuring the efficient usage 

of water and other resources tailored to plants’ 

need.  

   

(a)  EfficientNetV2L (b)EfficientNetV2M (c) RestNet50 

 

Fig. 18. LCA of agrivoltaics system in this study 
Note: Buah cabai 1 : 1 chili, Buah Cabai 2: 2 chilies, and Buah Cabai 6 are 6 chilies. 
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Fig. 18. LCA of agrivoltaics system in this study. 

The integration of solar panels and optimized 

resource use led to a 40% reduction in the 

carbon footprint of the farming operation. The 

reduced need for external energy sources and 

lower resource wastage contributed 

significantly to this reduction. The optimized 

use of fertilizers and water improved soil 

health over time, as evidenced by lower soil 

erosion rates and improved soil nutrient 

profiles. This aligns with the goals of 

sustainable agriculture, promoting long-term 

ecological balance. The reduction in chemical 

inputs and optimized farming practices 

supported local biodiversity. The use of 

integrated pest management practices, guided 

by accurate predictions, reduced the need for 

chemical pesticides, benefiting beneficial 

insects and local flora.  

CONCLUSION 

The integration of advanced technologies in 

agriculture offers promising avenues for 

enhancing sustainability and productivity. This 

study investigates the ecological impacts and 

benefits of using Convolutional Neural 

Network (CNN) transfer learning for harvest 

prediction in an agrivoltaic chili farming 

system. The micro-climate inside the 

experimental solar-powered greenhouse is 

automatically controlled and monitored by IoT 

to ensure ideal condition for the plant. The 

installed PV panels are beneficial in the place 

where the electricity from utility is 

intermittent. The experimental and simulation 

results of agrivoltaics analysis shows that the 

system is working as expected. Crop yield 

prediction is crucial to ensure the efficient 

harvest management, and this study presents 3 

transfer learning models for chili crop 

counting to predict chili harvest yield. The 

models are EfficientNet V2L, Efficient 

NetV2M, and RestNet 50, which were chosen 

due to the high accuracy of the pre-trained 

model list in the Keras Application. The 

experimental results show that the proposed 

method correctly counts the chili crops in an 

image where the accuracy of EfficientNetV2L 

is 100%, EfficientNetV2M is 93%, and 

RestNet 50 is 100%. The results also show 

quick convergence in training and validation 

accuracy, which indicates that the model 

learning effectively. Therefore, this study 

shows that transfer learning is ideal for crop 

counting to effectively predict how much 

resources need to be prepared during 

harvesting and harvest handling.  
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