STUDY OF THE EFFECT OF WHEAT GERM EXRACT ON THE **PRODUCTION OF EXOPOLYSACCHARIDES FROM THE BIO-ENHANCERS**

B. N. E. Al- Mousawi Assist. Prof.

E. K. Apd- Aljabar* Researcher

Dept. of Food Science - College of Agriculture / University of Baghdad sunenas78@gmail.com

dr.Baha Almosawi@vahoo.com

ABSTRACT

The objective of this study was to investigate effect of wheat germ extraction on the fermented milk products, which prepared using single and two types of mixed cultures of Lactobacillus acidophilus, Lactobacillus plantarum, ready premixed and 1: 1 mixture with inoculation of 5% in reconstituted skimmed milk 12% TS Which reinforced with different concentrations of wheat germ extracts 0, 5, 10 and 15% for treatments (T1, T2, T3 and T4) respectively. The results showed that the height of the viscosity of all the products increased by the percentage of added wheat germ extract. The best treatment (10%) of T3, which was 52, 65, 57 and 64 mpa for each of the types of bacterial starter culture in the above respectively, compared to the reduction in the ratio of T4 (15%) was 51 and 63, 55 and 60 mpa. Furthermore The treatment of 10% (T3) showed the best production of exopolysaccharides (4.518, 4.869, 4.524, 4.668 mg / ml) and reduction with T4 (15%) to 3.870, 4.784, 4.275 and 4.049 mg \cdot ml⁻¹ for each of the above probiotics cultures used in processing of fermented dairy products. The results showed that Lb. Plantarum is the most efficient in the production of exopolysaccharides, compared to other starter cultures bacteria and its role in increasing the viscosity and improve the strength of the probiotics fermented milk product treatment is a good qualities according to the Iraqi standard (milk fermented therapeutic).

Keyword : prebiotics, probiotics, viscoelasticity, (EPS). *Part of M.Sc. Thesis for the second author

المستخلص

تهدف هذه الدراسة بيان تأثيرمستخلص جنين الحنطة على انتاج السكريات المتعددة الخارجية من المعززات الحيوية حضر عدد من المنتجات اللبنية المتخمرة العلاجية باستعمال بوادئ منفردة ومختلطة لكل من بكتريا Lactobacillus acidophilus و Lactobacillus plantarum والبادئ المختلط الجاهز والبادئ المختلط بنسبة 1:1 من كلا النوعين في التصنيع بنسبة تلقيح 5% في الحليب الفرز المسترجع 12% مواد صلبة كلية والمدعم بتراكيز مختلفة من جنين الحنطة 0 و5 و10 و15 % بالمعاملات (T1, T4,T3,T2) على التوالي، أظهرت النتائج أرتفاع لزوجة كل المنتجات بزيادة نسب مستخلص جنين الحنطة المضافة وكانت أفضل معاملة T3 (10 %) التي بلغت 52 و65 و57 وmpa 64 لكل من أنواع بواديء بكتريا المعززات الحيوية في أعلاه على التوالي مقارنة بأنخفاض النسبة عند المعاملة T4 (15%) بلغت 51 و63 و55 وmpa 60، كما وأظهرت المعاملة T3 (10%) أفضل انتاج للسكريات المتعددة الخارجية إذ كانت 4.518. ف4.869 ف4.524 mg. ml⁻¹ 4.668 وأنخفاضها بالمعاملة T4 (15%) الى 3.870 و4.784 و4.275 وmg. ml⁻¹ 4.049 لكل من أنواع بوادىء بكتريا المعززات الحيوية في أعلاه على التوالي المستعملة في المنتجات اللبنية المتخمرة، وبينت النتائج تمين بكتريا Lb. plantarum الأكثر كفاءة في انتاج السكريات المتعددة الخارجية مقاربة ببكتريا البوادئ الاخرى ودورها في زيادة لزوجة وتحسين قوام المنتوج اللبني المتخمر العلاجي وهي من الصفات الجيدة على وفق المواصفة القياسية العراقية (اللبن المتخمر العلاجي).

> كلمات مفتاحية: المحفزات الحيوية، المعززات الحيوية، نسبة اللزوجة، نسبة السكريات المتعددة الخارجية *البحث مستل من رسالة ماجستير للباحث الثاني

*Received:25/5/2017, Accepted:27/9/2017

INTRODUCTION

In recent years, there has been a wide tendency to introduce Lactobacillus species ,especially Lactobacillus ,as vital boosters isolated from the human digestive tract because of its various therapeutic adjectives of microorganisms .This has encouraged their use in properties such as the antagonistic be maintaining the natural balance of intestinal flora and lowering the level of cholesterol in the blood, as well as being used as a treatment for people suffering from lactose intolerance (16). Its contribution to reducing cancer incidence .treatment constipation, of development of immune system in the body. (27). Its use in the manufacture of many food products for its role in improving flavor ,texture and prolong long food.(1,8). Lactobacillus has the ability to consumption and representation of mono and multilateral sugars so as to possess about twenty system of systems vectors of sugars (3) and the ability to foreign multiple secrete sugars Exopolysaccharides from the wall cellular (26) on two forms depending on their location either capsules linked to the cell surface capsular polysaccharides or put directly in the center of growth (10), and have different food application to be used as material stabilizing and viscosity increase improve the texture. Other Researchers (5,15) use alternative for fat in food as least fat to reduse calories and enhance the sense of taste Buchholz and they Seibel (6) and Sartor (21), mentioned to Welman (29)economic importance and its health effects The Lactobacillus acidophilus of the best strain of bacteria Lactobacillus probiotic to posses resistance to the acidity of gastric juice and bile salts and acids and susceptibility adhesion to the intestinal mucous layer and settle longer with in the gut .Charalampopoulos and Rastall (7), they found the ability to produce hydrogen peroxide and its antagonistic towards pathogenic bacteria forming spores to produce many antibiotics such as Lactocidin, and its ability to produce lactic acid, which has done inhibitory to microorganisms and other sensitive low pH, also contains wheat germ essential nutrients (protein, fat, carbohydrates, minerals and vitamins), which is one of the food cereal important from health and human life and reduce the risk of his illness, (14). Is a sucrose and raffinose the largest proportion of carbohydrates (20). The aim of the research is to produce and improve nutritional value, to prolong the life of the fermention milk of a biologically enhanced structure, and to maintain the required number of bacteria to give it therapeutic status, with the best election of starter probiotic.

MATERIAL AND METHODS

Lactobacillus acidophilus was equipped from a Tablet (10 Billion) and Lactobacillus plantarum in the form a capsule which were processed by (Quest) for the production of probiotic bacteria starter and activated a number of times during implantation in skim and incubation until curd milk The components of the wheat germ used in the consolidation of carbohydrate, protein, fat, moisture, fiber and ash were estimated according to the standard methods listed in A.O.A.C(8) The fermented products were prepared using skim milk with the addition of (0,5,10 and 15)% extracted wheat germ according to the parameters shows in Table 1 and sterilized with the autoclave at 121c for 15 minutes and then cold and added % 5 mono starter from Lactobacillus acidophilus and Lactobacillus plantarum and starter mixed ready and starter mixed ratio 1:1 of both types and incubated at anaerobic condition at 37c for16 hours and then chemical and physical tests were done during the period of storage at 4 °C.

Table 1. wheat gern	extract percentages in
---------------------	------------------------

samples			
Treatment	percentages extract wheat germ		
T1	Sample standard without addition		
T2	5%		
Т3	10%		
T4	15%		

Determination of Viscosity

The Isang and Zhang methood (13) was followed by using (Brookfield Digital) device model DV-E USA Origin, as in Fig 1 to determination viscosity of flow resistance to flow, 22c and 50 rpm, which were calculated in mpa/s following manufacturers manual.

Fig 1. Brookfield Digital device for measuring the viscosity of fermented dairy Determination of Exopolysaccharides (EPS): The estimated of exopolysaccharides by using phenol-sulfuric acid method, according to Alp & A slim (2)

Determination of Water-Holding Capacity (WHC): The method of Water-Holding Capacity Followed method (12) to estimate the viability of the fermented dairy for preservatives the water as character to obtain cohesive texture and smooth tissue in the final therapeutic products.

Statistical analysis: The Statistical analysis: SAS-System (22) was used in study the effect wheat germ percentages addition of the fermented dairy in the probiotic bacteria to produc (EPS) and high viscosity. The differences were compared between the means using the least significant difference test

RESULTS AND DISCUSSION

Table 2 shows chemical composition of wheat germ which accumulate (50.7, 28.0, 8.1, 7.8, 2.9, 2.5) % for carbohydrates, proteins, fats, moisture, ash and fiber) respectively

Table 2. Chemical composition of wheat

germ		
Content	%	
Carbohydrates	50.7	
Proteins	28.0	
Fats	8.1	
Moisture	7.8	
Ash	2.9	
Fiber	2.5	

Table 3 and Fig 2 shows the high viscosity in fermented dairy with the probiotic bacteria increasing the concentration by added of wheat germ to the bacterial species. The best treatment was T3 (52,65,57,64) mpa-s for *Lactobacillus acidophilus* and *Lactobacillus plantarum* and starter mixed ready and starter mixed ratio 1:1 of both types respectively. The viscosity is one of the most important qualities yoghurt which reflects the texture

(formed by the sulfide bond between k-Casein and whey proteins and Casein deposition in the milk by the reduction of pH during the manufacturing process)with Rheological properties the most important of the quality milk fermented probiotic product. Ramchandarn (19) found reduction of lactose in the treatment of T4 (55, 63, 51, 60) Mpa-s as a result of its conversion to lactic acid by bacteria led to low viscosity. (24)

Table 3. viscosity products from the probiotic bacteria

<i>a.</i> .	Ē	Viscosity	mpa-s	
Starter	percentages extract wheat germ			
bacteria	%(0)T1	%(5)T2	(10)T3	(15)T4
Lb. acidophilus	4 5	48	52	51
Lb . plantarum	55	59	65	63
mixed ready	41	48	57	55
mixed ratio 1:1	51	54	64	60
LSD	7.201*			

Fig 2. effect wheat germ on growing Starter bacteria

The Statistical analysis revealed a significant differences between the means of the treatments for bacterial for species Lb. *plantarum* bacteria gave high Viscosity of the medium at T3 of 65 pa-s and can be inferred

EPS as the most produce for in the fermentation medium (Fig3) while, Looijesteijn (17) indicated that increased viscosity of the immunization food medium Lactococcus lactis indicated the high amount of sugar produced. The results of the statistical analysis in Table 4 a significant differences between the means of this treatment and the control, indicats the positive effect of the concentrations of wheat germ supplemented by (5 and 10)% to the amount of sugar produced, because it contains sugars and proteins which made from amino acids .The concentration of wheat germ extract 10%, the best value (4.518, 4.869, 4.524, 4.668) mg. ml⁻¹ for each of probiotic bacteria. respectively, (23). To estimate the quality of sugars, HPLC technology was used the wheat germ including raffinos it is composed of fructose ,glucose, galactose, which was found in one or more bodies linked to α - β fructosidic lactosidase. The probiotic bacteria could be represent these sugars as an energy because thev possess the source αalactosidase which is a substance prebiotics (that is not digestible in the digestive tract in stimulating) the growth and effectiveness of probiotics bacteria and enhance growth within the intestine, and may be the effect of positive carbohydrates by stimulating its effective glycosyltransferase enzymes that act on the link of sugar nucleotide and polymerization during the process of multiple sugars. (18). While, the concentration of wheat germ 15% reduced the amount of sugar produced to 3.870. 4.784. 4.275and 4.049 mg. ml⁻¹ respectively and may be due to the highest concentration of glucose in the food medium more than the required limit requires an increase in the number of vectors and nucleotides required for the binding of sugar in cytoplasm during the process of bacterial synthesis of sugar, and therefore requires more energy exchange, which in turn leads to the stability of the synthesis without increasing the amount of sugar, the product (9) Bacteria Lb. Plantarum are more efficient in the production of polysaccharides multiple high-weight and high melting point compared to the rest of the types of lactic acid bacteria, including Lb. acidophilus used in the study, giving high viscosity of the fermented. (28). The results of their researchers with (10),a positive relationship between external the polysaccharides and the viscosity of the product. EPS reduces the added stabilizers of the milk ferments by substituting them with important therapeutic bacteria by type of strain without having a bad effect on the flavor, The interaction of free water with polysaccharides for the formation of jelly and the addition of viscosity is a critical step in the fermented dairy industry and its active role in the overall visual appearance of the product.

Table	4. Product of total	EPS	from
	probiotic bacter	ia	

	EPS mg\ml			
Starter	percentages extract wheat germ			
Dacteria	(0)T1	(5) T 2	(10)T3	(15)T4
Lb. acidophilus	0.003	2.380	4.518	3.870
Lb . plantarum	0.007	4.778	4.869	4.784
mixed ready	0.001	3.240	4.524	4.275
mixed ratio 1:1	0.001	4.528	4.668	4.049
LSD	1.074*			

Fig 4. Effect wheat germ on growth of bacteria and the production of EPS

Table 5 shows a significant differences of susceptibility fermented dairy supported by extract wheat germ on keeping (WHC) as it was 53.0, and 43.0 and 31.5 and 39.5% on respectively for control treatment manufactured using the bacteria Lactobacillus acidophilus and Lactobacillus plantarum and starter of the mixed ready starter mixed by 1 : 1 for both types, and the ratio increased to (36.5 and 48.5, and 35.0 and 43.0) for the treatment of T2 and to (42.5 and 52.5, and 38.5, 50.0) for the treatment of T3 and to (49.0 and 56.0, and 45.0 and 53.5) for the treatment respectively. of T4 with increased susceptibility water retention (No separation of

Al- Mousawi & Apd- Aljabar

Whey), an increase of wheat germ ratios to match these results (23) increase the amount of wheat germ added increased the ability to hold water to contain the fiber, carbohydarates and protein that have the ability to bind water as a result of the composition bonds of hydrogen between water molecules and the polar group of peptide chains, and the best strength of the product fermented dairy initially bacteria *Lb.plantarum* is believed that there is a correlation between the proteins of wheat germ and (EPS), It is produced by bacteria to get the best texture and smooth texture

Table 5. Water holding capacity (W)

G4 4	WHC%			
Starter	percentages extract wheat germ			
Dacteria	(0)T1	(5)T2	(10)T3	(15)T4
Lb. acidophilus	53.0	36.5	42.5	49.0
Lb. plantarum	43.0	48.5	52.5	56.0
mixed ready	31.5	35.0	38.5	45.0
mixed ratio 1:1	39.0	43.0	50.0	53.5
LSD	6.983*			

REFERENCES

1. Abrahamsson, T. R., G Sinkiewicz, ., T. Jakobsson,., M. Fredrikson,., and B.Björkstén, 2009. Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. Journal of pediatric gastroenterology and nutrition, 49(3), 349-354 2. Alp, G., and B Aslim,. 2010. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of *Bifidobacterium* spp. isolated from infants feces and breast milk. Anaerobe, 16 (2), 101-105

3. Altermann, E., M. Russell, W., A. Azcarate- Peril, M., R. Barrangou, Buck, B. L., O McAuliffe, and S. Lick, 2005. Complete genome sequence of the probiotic lactic acid acterium *Lactobacillus acidophilus* CFM. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 3906-3912

4. Association of Official Analytical Chemists A.O.A.C. 2008. Official Methods of Analysis 16th ed. Association of Official Analytical Chemists International Arligton, Virginia,U.S.A

5. Badel, S., T. Bernardi,., and P. Michaud,. 2011. New perspectives for Lactobacilli exopolysaccharides Biotechnology dvances, 29(1), 54-66

6. Buchholz, K., and J. Seibel, 2008. Industrial carbohydrate biotrans formations . Carbohydrate esearch, 343 (12), 1966-979

7. Charalampopoulos, D., and R. Rastall, A. (Eds.) 2009 . Prebiotics and probiotics science and technology (Vol. 1). New York: Springer

 De Vrese, Michael, and J. Schrezenmeir.
2008. Probiotics, Prebiotic, and Synbiotics
"Food Biotechnology. Springer Berlin Heidelberg pp. 1-66

9. Finore, I., P .Di Donato,.,V . Mastascusa,., B. Nicolaus,., and A. Poli,. 2014. Fermentatio technologies for the optimization of marine microbial exopolysaccharide production. Marine drugs, 12(5), 3005-3024

10. Georgieva, R., I.Iliev, T. Haertlé,,, J.Chobert, I. Ivanova, and S. Danova, 2009.Technological properties of candidate probiotic *Lactobacillus plantarum* strains. International Dairy Journal, 19(11), 696-702

11. Han, X. Z., Yang, X., Jing, P., Yu, M Y., Zhang, H., Yi, and L., Zhang, 2016. Improvement of the texture of yogurt by use of exopolysaccharide producing lactic acid bacteria. BioMed Research international

12. Harte, F., L. Luedecke, B., Swanson, and Barbosa-Canovas, 2003. Low-fat set yogurt made from milk subjected to combinations of high hydrostatic pressure and thermal processing. Journal of dairy science, 86(4), 1074-1082

13. Isanga, J., and G, Zhang, 2009. Production and evaluation of some physicochemical parameters of peanut milk yoghurt. LWT-Food Science and Technology, 42 (6), 1132-1138

14. Jemal, A., E. Ward, Y. Hao, and M., Thun, 2005. Trends in the leading causes of death in the United States, 1970-2002. Jama, 294(10), 1255-1259

15. Kanmani, P, N. Yuvaraj, A., Paari, K. Pattukumar, V, and V, Arul, 2011. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresource Technology, 102(7),4827-4833

16. Karimi, R. M.,,Mortazavian,A. and A Amiri-Rigi, 2012.Selective enumeration of

probiotic microorganisms in cheese Food microbiology, 29(1), 1-9.

17. Looijesteijn, P. J., H. W. H., R. Van, Casteren, L. Tuinier, C. H. Doeswijk-Voragen, and J. Hugenholtz, 2000. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by *Lactococcus lactis* subsp. *cremoris* in continuous cultures. Journal of Applied Microbiology, 89(1),116-122

18. Madhuri, K. V. and K.V. Prabhakar, 2014. Microbial exopolysaccharides :biosynthesis and potential applications. Oriental Journal of Chemistry, 30(3), 1401-1410

19. Ramchandran, L. 2009. Physico-Chemcal and Therapeutic Properties of Low-Fat Yogurt as Influenced by Fat Replacers, Exopolysaccharides and Probiotics(Ph.D.).

20. Rizzello, C. G., L., Nionelli, R. Coda, R. Di Cagno, and M, Gobbetti, 2010. Use of sourdough fermented wheat germ for enhancing the nutritional, texture and sensory characteristics of the white bread. European Food *Research and Technology*, 230(4), 645-654.

21. Sartor, R. B. 2004. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology, 126(6), 1620-1633

22. SAS. 2012. Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed . SAS. Inst. Inc. Cary. N.C. USA

23. Seleet, F. L., M. Assem, F. Abd A., El-Gawad, M. M., Dabiza, N. and M. H, Abd El-Salam, 2016. Development of a novel milk-based fermented product fortified with wheat germ. International Journal of Dairy Technology, 69(2), 217-224

24. Stack, H. M., N. Kearney, C. F Stanton,, G. Fitzgerald, and R. P. Ross, 2010 Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli Applied and environmental microbiology, 76(2), 00-507

25. Tok, E., and B. Aslim, 2010. Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiology and immunology, 54 (5), 257-264

26. Tsai, T. Y, Y, L. Chen, and M. T. Pan, 2014. Effect of probiotic–fermented, genetically modified soy milk on hypercholesterolemia in hamsters. Journal of microbiology Immunology and Infection, 47(1), 1-8

27. Wang, J. X, Zhao, Z. Tian, Y., Yang, and Z., Yang, 2015. Characterization of an exopolysaccharide produced by *Lactobacillus plantarum* YW11 isolated from Tibet Kefir. Carbohydrate polymers, 125, 16-25

28. Welman, A. D. 2009. Exploitation of Exopolysaccharides from Lactic Acid Bacteria:Nutritional.Bacterial polysaccharides: Current Innoations and Future Trends pp: 331.