MORPHOMETRIC AND SCANNING ELECTRON MICROSCOPE-BASED IDENTIFICATION OF Taenia hydatigena PARASITES IN STRAY DOGS

GH. D. Al-Sudani
Researcher

A. M. A. Al-Amery
Prof.

Department of Parasitology, College of Veterinary Medicine, University of Baghdad, Iraq

Email: gharibdohi@gmail.com

ABSTRACT

Taenia hydatigena, an intestinal parasite of domestic and wild canids which can cause medical problems and economic losses in animals. Thirty T. hydatigena recovered from the intestine of stray dogs after T. hydatigena based on morphological characters and morphometric observations involving Scanning Electron Microscopy (SEM) and the scoleces were stained by Semichon’s acid carmine and viewed on a light microscope. High-quality SEM photographs were shown the blade dimensions of both large and small hooks (83.89 μm and 48.16 μm) respectively, which was close to measurements by a digital camera. The number of hooks around the rostellum were 30 hooks, and both were equal in number (15 hooks), while the average length of the large hooks was 220.11 ±28.07 μm, and was 88.58 ±7.92, and the average length of small hooks was 142.37 ±12.52 μm and was 65.73 ±6.94 μm. body surface of Taenia hydatigena presence of characteristic transverse cuticular striations.

Key words: tape worm, canine, morphology, Iraq, heads, hooks

Received: 28/8/2022, Accepted: 4/12/2022
INTRODUCTION

*Taenia hydatigena* is a cosmopolitan intestinal parasite of domestic and wild canids (dog, wolf, fox, and coyote) that can infect many livestock, such as sheep, buffalo, yak, cattle, and goats with its larval stage (*Cysticercus tenuicollis*) (4, 11, 15). One of the most important animal species is stray dogs that act as a host and reservoir for public health importance of parasites infection that dogs were discharged eggs included *Taenia hydatigena* parasite (7, 15). The disease has a wide distribution with prevalence in the range of 0.1 and 32% varying between various countries and hosts (3, 5, 12). The morphological identification by light microscope of *Taenia hydatigena* was helped for the confirmation of adult parasites. Further, Scanning Electron Microscopy (SEM) is beneficial to study the ultrastructure as it provides detailed three-dimensional and topographical imaging and the versatile information garnered from parasites (8). Aim of the present study deal with morphometric observations coupled with SEM for the identification of *T. hydatigena*.

MATERIALS AND METHODS

Stray dogs were examined according to OIE (13), samples were collected from different areas of Baghdad, necropsied dogs were dissected directly to collect the small intestine and cecum; a longitudinal incision was performed on the small intestine and cecum and the contents initially analyzed to direct visualization of adult parasites (10). The worms will be collected in a petri dish rinsed several times with physiological normal saline and kept in 70% ethyl alcohol. The morphological features of the adult worms were described according to Zajac and Conboy (16). For morphometric analysis, parasites were identified by using SEM (Inspect™ Scanning Electron Microscope) model Inspect S50, at Scanning Electron Microscopy Laboratory, Applied Sciences, University of Technology. Further, SEM studies were conducted for exploring minute morphological features of *T. hydatigena*. The scolexes were viewed on a microscope (Light microscopy, Olympus Optical Co., Ltd., Tokyo, Japan) using an x100 objective lens. Number, length, and arrangement of rostellar hooks were done using a digital microscope camera (5.0 MPx VisiCam and VisiCam analyzer software) and Semichon’s acid carmine staining procedures according to (1.9) was applied to *T. hydatigena* parasites. The morphological investigation was led on 30 samples from adult parasites. The scolexes were mounted and adequate pressure was applied to the coverslip to cause the snares to lie level. For measurable examination, five factors were thought of: the number of hooks per rostellum, the total length of large and total small and hooks blade length of large and blade length of small hooks.

RESULTS AND DISCUSSION

Adult *Taenia hydatigena* parasites recovered from the intestine of the dog at the time of necropsy were identified as taenia based on morphological characters. The adult parasite is very like the cord. Its usual length is about 75-115 cm. The body of the parasite consists of the head called a scolex, a narrow neck, and many segments called strobila. The scolex possesses four suckers and a rostellum with 30 hooks, situated in two rows of hooks. The results showed that morphological analysis of the hooks surrounding the rostellum was determined that the hooks were arranged with two rows of altering large and small hooks as noted (Figures 3, 4). The number of hooks was calculated (30 hooks) in all examined samples were analyzed (30 samples) as shown in table (1). The results showed that the range of large length hooks between 172.85 and 246.12 μm, and the average 220.11 ±28.07 while hooks between 105.70 and 167.09 μm and the average was 142.37 ±12.52. The range length Blade of large hooks was between 70.3 and 107.22 μm with average 88.58 ±7.92 and the blade range length of small length hooks was 90.68 and 40.01 μm with average 65.73 ±6.94 μm. These results were close agreed with many references like Al-Hamzawi and Al-Mayali in Iraq (2), Loos-Frank in Germany (9), Radfar et al., in Iran (14), Singh et al., in India (16), Mokhtaria et al., in Algeria (10), OIE, (13) and Filip et al., in Poland (6). High-quality SEM photographs showed large and small hooks (Figure 4) and the measurements of the blade of the large hook was 87.03 – 83.89 μm and of the small hook was 48.61 μm in (Figures 4, 5) and that size was similar to measurement the blade of large and small.
hooks in this study by using a digital microscope camera, furthermore, the outer surface of proglottid was shown the presence of characteristic transverse cuticular striations on the body surface (Figure 6).

Table. number and measurement of hooks in rostellum of *T. hydatigena*

<table>
<thead>
<tr>
<th>Host of hooks</th>
<th>Dogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples analyzed</td>
<td>30</td>
</tr>
<tr>
<td>Number of hooks</td>
<td>30</td>
</tr>
<tr>
<td>Number of large hooks</td>
<td>15</td>
</tr>
<tr>
<td>Number of small hooks</td>
<td>15</td>
</tr>
<tr>
<td>Total large length hooks</td>
<td>172.85 - 246.12 μm</td>
</tr>
<tr>
<td>Blade of large length hooks</td>
<td>70.3 – 107.22 μm</td>
</tr>
<tr>
<td>Average of large length hooks</td>
<td>220.11 ±28.07 μm</td>
</tr>
<tr>
<td>Average Blade of large length hooks</td>
<td>88.58 ±7.92 μm</td>
</tr>
<tr>
<td>Total Small length hooks</td>
<td>105.70 – 167.09 μm</td>
</tr>
<tr>
<td>Blade of Small length hooks</td>
<td>90.68 – 40.01 μm</td>
</tr>
<tr>
<td>Average of Small length hooks</td>
<td>142.37 ±12.52 μm</td>
</tr>
<tr>
<td>Average of Blade Small length hooks</td>
<td>65.73 ±6.94 μm</td>
</tr>
</tbody>
</table>

Figure 1. Show hooks set free (x100) power (A) Large hook length, (B) Blade of large hook, (C) Small hook length, (D) Small hook blade length.

Figure 2. A. shows the number of small hooks, B. shows the number of large hooks (x100).

Figure 3. A. B. *Taenia hydatigena* stained with Semichon's acid carmine stain show the small hooks, and large hooks x100 power.

Figure 4. Scanning electron microphotograph of *Taenia hydatigena* showing dimensions blade of large and small hooks.
REFERENCES
8. Loos-Frank, B. 2000. An up-date of Verster’s 1969 ‘Taxonomic revision of the genus Taenia Linnaeus’ (Cestoda) in table format. Systematic Parasitol; 45(3);155–184

