EFFECT OF BIO HEALTH, TECAMIN MAX AND BENZYL ADENINE ON GROWTH CHARACTERISTICS OF SWEET ORANGE SEEDLINGS

A. S. Abdulrhman

Assist. Prof.

Sh. M. M. Al-Atrushy Prof.

Dept. Hort. Coll. Agric. Engi. Sci. University of Duhok, Iraq

amira.salih@uod.ac

ShawkaT.Mustafa@uod.ac

ABSTRACT

This investigation was aimed to study the effect of soil application of Bio health and foliar application with Tecamin max and Benzyl adenine on growth characteristic of sweet orange (*Citrus sinensis* L.) seedlings during two successive seasons (2020 and 2021). Bio health was added with three concentrations (0, 6 and 12 g.L⁻¹) to the soil and foliar application of Tecamin max with three concentration (0, 5 and 10 ml.L⁻¹), Benzyl adenine with three concentration (0, 100 and 200 mg. L⁻¹) on the sweet orange seedlings which were brought from private nursery in Duhok city and have two- years old and nearly uniform in growth vigor. The results proved that all parameters such as increases in plant high, stem diameter, branch numbers, single leaf area, total chlorophyll as soon as leaves carbohydrate and leaves dry weight in both seasons were increased significantly as compared with control, accept Tecamin max had no significant effect on leaves carbohydrates and leaves dry weight, Benzyl adenine no significant effect on leaves dry weight on both seasons, Furthermore, combination among high concentration of Bio health, Tecamin max and Benzyl adenine improved all parameters in comparison with the control.

Keyword: Bio fertilizer, Amino acid, Cytokinin, local, Citrus . Part of Ph.D. Dissertation of the first author.

قسم البستنة/كلية علوم الهندسة الزراعية/ جامعة دهوك

تهدف هذه التجربة الى دراسة تاثير اضافة السماد الحيوي الى التربة والرش بالتيكامين ماكس والبنزل ادينين على صفات النمو الخضري لشتلات البرتقال الحلو (.L *Citrus sinensis* L) خلال موسمي النمو (2020–2021). اضيف السماد الحيوي الى التربة بثلاث تراكيز (0 و 6 و 12) غم.لتر⁻¹ والرش بالحامض الاميني تيكامين ماكس بثلاث تراكيز (0 و 5 و10 مل.لتر⁻¹ وثلاث تراكيز من البنزل ادينين (0 , 100, 200) ملغ.لتر⁻¹ على شتلات البرتقال الحلو التي جلبت من مشتل اهلي في مدينة دهوك، عمرها سنتين ومتماثلة تقريبا في قوة النمو. اظهرت النتائج ان اغلب الصفات مثل الزيادة في ارتفاع وقطرالنبات قطر وعدد الافرع و مساحة الورقة الواحدة والكلوروفيل الكلي وكذلك نسبة الكاربوهيدرات في الاوراق والوزن الجاف للورقة في كلا الموسمين ازدادت معنويا مقارنة بمعاملة المقارنة (الكونترول) ماعدا الرش بالحامض الاميني لم يسبب تاثير معنوي في نسة الكاربوهيدرات والوزن الجاف في الاوراق وكذلك الرش بالبنزل ادينين لم يسبب تاثير معنوي في الوزن الجاف للورقة في كلا الموسمين، اضافة الذلك فان التداخل بين التركيز العالي من السماد الحيوي والحامض الاميني والبنزل الجاف للورقة في كلا الموسمين، اضافة الذلك فان التداخل بين التركيز العالي من السماد الحيوي والوزن تاثير معنوي في كلا الموسمين، اضافة الذلك فان التداخل بين التركيز العالي من السماد الحيوي والحامض الاميني والبنزل الجاف للورقة في كلا الموسمين، اضافة الذلك فان التداخل بين التركيز العالي من السماد الحيوي والحامض الاميني والبنزل درينين حسنت كل الصفات مقارنة بالكونترول.

البحث جزء من اطروحة دكتوراه للباحث االاول

Received: 26/1/2022, Accepted: 10/4/2022

INTRODUCTION

Citrus fruits are one of the most delicious fruits belonging to the family Rutaceae. All commercially important species belong to the including sweet genus citrus orange. Mandarin, lime, Lemon, Sweet lime, Grape fruit, etc. Sweet orange is originated from southern China where it has been cultivated for many years (30). But today it is grown commercially worldwide in tropical, subtropical and some temperate regions to become the most widely planted fruit tree in the world (21). Nutrition is an important input that determines the soil health and production as a whole, the application of nutrients to both young and maturing trees determines the vegetative development of citrus trees (27). Today, chemical fertilizers are undesirable in crops nutrition because it had adversely effects on the soil fertility, water quality, yield and quality of the products (6, 33). Therefore, uses of bio-fertilizers, amino acids and Benzyl adenine have assumed great importance for sustainable production and to improve the soil physical, chemical and biological properties. Also, they are a good alternative to reduce uses of chemical fertilizers. In this respect, several workers reviewed the significant role of bio-fertilizers in influencing the soil properties and enhancing the growth, yield and quality of citrus (17, 24, 25). Bio-fertilizers have the potential to increase the health and productivity of plant life and reduce the need to use synthetic fertilizers (7, 8). Most of biofertilizers consist of microbes that are involved in the decomposition of organic matter and the breakdown of minerals into a soluble form that is useful to plants. The results Al-Abbasi. (1) showed that bio-fertilizers treatment of Azospirillium and Bacillius with organic fertilization was significantly increased the height of seedling, stem diameter, number of branches, number of leaves, leaf area and shoot fresh and dry weights compared with control treatment which gave the lowest Amino acids are organic values. compounds; the key elements of an amino acid (C, (H, O and N), although other elements are found in the side chains of certain amino acids. About 500 naturally occurring amino acids are known (though only 20 appear in the genetic code) and can be classified in many ways (28).

Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell (19, 31). The results Al-Himdany. (3) showed that spraying of saplings with Disper chlorophyll had high significant increase in plant length -stem diameter, branch umber, leaves area, root number, root length, root branches compared to the control treatment. Benzyl adenine (BA) can be considered to be endogenous-like an compound which provides very little risk to the environment. A precondition of precocious bearing in young trees is the development of a canopy structure which has good cropping potential and this can be achieved by using BA. The efficiency of PGRs is determined by physiological age of trees, by the the environmental conditions at application and by the application methods used (12). Al-Juboori. investigated the effect of three (5) concentrations of Benzyl adenine (0, 100, 200) mg. L^{-1} and three concentrations of Gibberllic acid (0, 150, 300) mg. L-1 on Two citrus seedlings (Swingle citrumelo and Troyer citrange). The results showed superiority of Swingle citrumelo root stocks in C/N ratio, phosphorus and potassium leaves content for two seasons while Troyer citrange root stock showed superiority in leaves content of (Nitrogen and Protein) which. the treatment of Benzyl adenine 200 ml. L⁻¹ had significant increases in all studied characteristics C/N ratio, Nitrogen, Protein, phosphorus and potassium for two seasons (10.01, 1.533%, 9.57% ,0.247% and 0.602%) for season 2013(11.22, 1.703%, 10.64%, 0.275% and 0.669%) for season 2014 respectively. This study was aimed to investigate the effect of Bio health, Tecamin max and Benzyl adenine alone or in combination on vegetative growth characteristics of sweet orange seedlings.

MATERIALS AND METHODS

This study was carried out in the lath house of the College of Agricultural Engineering Sciences, Duhok Province, Kurdistan Region, Iraq, during two growing season (2020 -2021) to study the effect of Bio health with three concentrations (0, 6 and 12 g.L⁻¹), Tecamin max with three concentration (0, 5 and 10 $ml.L^{-1}$), Benzyl adenine with three concentration (0, 100 and 200 mg.L⁻¹) and interaction on their vegetative growth characteristics of sweet orange seedling, which were brought from private nursery at Duhok city and had two years old and nearly uniform in growth vigor. All seedlings were transferred from plastic bags to the pots with a capacity of 10 kg mixture of 1:3 organic manure and river sand. The decided concentration of Bio health was dissolved in a liter of water, and then the solution was added to the soil around the seedlings in 20 March for both seasons and was repeated one month later. The previous decided conc. of the Tecamin max and Benzyl adenine were prepared then the seedlings were sprayed as a foliar application three times per season: first, 24/3 /2020 for Tecamin max and 27 / 3 / 2020 for Benzyl adenine and was repeats three time in interval one month for the two growing seasons, the spraying was done till the runoff, Tween-20 was used to increase the surface tension of leaves, the control plants were sprayed only by distilled water with Tween-20. The experiment was arranged in a randomized complete block design with four replications and three seedlings for each experiment unit. All the results were analyzed statistically by using SAS programs (29). Duncan 's multiple range test (DMRT) at 5% level of portability was used to compare the treatments means according to the (5). During the study period, attention was paid to the operations of servicing seedlings, such as

irrigation, control of diseases and insects, and removal of weeds. The lath house was also covered with plastic during the cold winter months, from December until March, to protecting the seedlings from frost.

RESULTS AND DISCUSSION

Plant hight: Data in Table 1 Clearly shows that soil application of Bio health at both concentrations significantly increase seedling high compared to the control, the high value (18.91 and 10.78 cm) for both seasons respectively were obtained in seedling treated with 12 g. L^{-1} , whereas the less increase in seedling high (13.09 and 6.85 cm) were obtained in untreated seedling. Data in same table indicate that spraying of amino acid (Tecamin max) at both concentrations during both seasons led to increase seedling hight. The highest value (18.72 and 10.55 cm) for both seasons respectively were show in seedling sprayed with 10 ml.L-1 of Tecamin max compared to the lowest values showed in control. For the effect of Benzvl adenine. Table (1) appears that spraving sweet orange seedling significantly increased seedling hight in both seasons, maximum increase (18.90 and 10.61 cm) for both seasons respectively were resulted in seedling sprayed with 200 mg. L^{-1} Benzyl adenine compared to minimum increase (13.45and 7.09) for both seasons respectively were obtained in control. Regarding the interaction among the a above factors same table clearly shows that the best increase (24.250 and 15.225 cm) was results for interaction among the highest concentration of Bio-health, Tecamin max and Benzyl adenine in both seasons.

Table 1. Effect of Bio health, Tecamin max and Benzyl adenine	on average increase in plant
hight of sweet orange seedlings	

$\begin{array}{c c c c c c c } Treatments & 2020 \ \ season & 2021 \ \ season & 2020 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Treatments		2	020 season		ange seed	111169	2021	000000		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Tocomin									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Benzyl ac	denine (BA	\mathbf{M})mg. \mathbf{L}^{-1}		Benzyl	adenine (B	A)mg.L ⁻¹		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g.L^{-1}$	ml.L ⁻¹	0	100	200	×BA	0	100	200	× T.M	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	6.000	13.250	15.250	11.500	4.025	4.492	6.825	5.114	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		U	Ι	f-h	c-h	f	k	jk	f-k	е	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	=	10.500	13.500	16.167	13.389	5.308		8.400	6.494	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U	0 5	g-i	e-h	b-g	ef	i-k	h-k	d-i	de	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10		14.417		14.389	6.767	8.517	11.550	8.944	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	f-h	d-h	b-h	d-f	f-k	d-i	b-d	bc	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	8.750	15.833	16.667	13.750	6.183	7.642	8.925	7.583	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			hi	b-g	b-g	d-f	g-k	e-k	c-i	cd	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-	16.500	16.667	17.000	16.722	6.475	7.350	9.858	7.894	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	5	b-g	b-g	b-g	c-e	f-k	f-k	b-g	cd	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10		0		21.056	7.875		0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		U									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	_									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	12 5									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10									
Bio healthBio × BAEffectBio × BAEffect024of Bio.024of Bio.09.86113.72215.69413.0935.3676.2618.9256.851615.38917.50018.63917.1766.8447.81710.0148.225615.11119.2522.38918.9179.08110.36412.91110.7851215.11119.2522.38918.9179.08110.36412.91110.7851215.11119.2522.38918.9179.08110.36412.91110.7851215.13817.38914.1855.3866.6118.9446.98109.52815.63917.38914.1855.3866.6118.9446.98109.52815.63917.38914.1855.3866.6118.9446.98109.52815.63917.38914.1855.3866.6118.9446.98113.75016.47218.61116.2787.0397.71910.2288.3291017.08318.36120.72218.7228.86710.11112.67810.552a-cabaaabcbAa1013.45416.82418.9077.0978.14710.617				D' D							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bio he	alth	$\mathbf{Bio} \times \mathbf{BA}$				$\mathbf{B}\mathbf{IO}\times\mathbf{B}\mathbf{A}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	2	4		0	2	4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		9.861	13.722				6.261	8.925		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		e	d	b-d	b	e	de	Bc		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					18.639						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6		cd								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	I.WI X DA		of T.M		\mathbf{I} .IVI × \mathbf{D}	7	of T.M	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0		9.528	15.639	17.389	14.185	5.386	6.611	8.944	6.981	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U		d	bc	a-c	с	e	de	Bc	с	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		13.750	16.472		16.278	7.039		10.228		
10 17.083 18.361 20.722 18.722 8.867 10.111 12.678 10.552 a-c ab a a bc b A a Main effect of BA 13.454 16.824 18.907 7.097 8.147 10.617	5		с	bc	ab	b	c-e	cd	В	b	
10 a-c ab a a bc b A a Main effect of BA 13.454 16.824 18.907 7.097 8.147 10.617	10				20.722			10.111	12.678		
Main effect of BA 13.454 16.824 18.907 7.097 8.147 10.617	10										
Main effect of RA	M	4 . C D 4									
	Main effec	ct of BA									

Means with the same letter are not significantly different according to Duncan multiple ranges test at 5% level Stem diameter studies factors compared to the lowest increas

Data in Table (2) shows that soil application of Bio health and spraying of Tecamin max and Benzyl adenine all at highest concentration (12g.L⁻¹,10 ml.L⁻¹and 200 mg.L⁻¹ ¹) respectively led to increase in stem diameter of sweet orange seedling, the highest diameter increases in stem (2.00.1.75,1.76,1.70 and 1.75,1.44 mm) for both season respectively were produced from application of highest concentration of all studies factors compared to the lowest increase (1.20, 0.79,1.46, 0.84 and 1.48, 1.12 mm) for both seasons respectively were obtained in un treated seedling. Concerning the combination effect of studies factor, the best increase in stem diameter were resulted from the interaction among the high concentrations of both Bio health, Tecamin max and Benzyl adenine compared to the less result were obtained in untreated seedling.

Table 2. Effect of Bio health, Tecamin max and Benzyl adenine on average increase in plant
high of sweet orange seedlings

Treatments	Inign of sweet orange seedings 2020 season 2021 season									
	Tecamin	Benzyl adenine				Benzyl adenine				
Bio health	max	$(BA)mg.L^{-1}$			$T.M \times BA$	(Bio × T.M			
$\mathbf{g}.\mathbf{L}^{-1}$	$ml.L^{-1}$	0	100	200		0	100	200		
0		0.833	1.092	1.500	1.142	0.365	0.458	0.647	0.490	
	0	f	Ef	b-f	e	Lm	k-m	j-m	е	
0	_	1.083	1.167	1.167	1.139	0.829	0.900	1.083	0.938	
0	5	ef	d-f	d-f	е	g-m	g-l	f-k	d	
	10	1.250	1.250	1.500	1.333	1.417	1.250	0.221	0.962	
	10	c-f	c-f	b-f	de	d-h	e-j	Μ	cd	
	0	1.250	1.500	1.583	1.444	0.708	0.917	1.250	0.958	
		ab	b-f	a-f	c-e	i-m	g-l	e-j	cd	
(5	1.583	1.475	1.833	1.631	1.167	1.333	1.441	1.314	
6	5	a-f	b-f	a-e	b-d	f-j	d-i	d-g	с	
	10	1.667	1.750	1.917	1.778	1.500	1.750	1.908	1.719	
	10	a-e	a-e	a-d	bc	d-g	c-f	b-e	b	
	0	1.746	1.833	1.833	1.804	0.750	1.083	1.400	1.078	
	0	a-e	a-e	a-e	bc	h-m	f-k	d-h	cd	
10	5	1.917	2.000	2.083	2.000	1.417	1.625	2.167	1.736	
12		a-d	a-c	ab	ab	d-h	c-f	Bc	b	
	10	2.008	2.250	2.333	2.197	2.000	2.417	2.917	2.444	
	10	a-c	ab	а	а	b-d	ab	А	а	
Bio hea	141.		Bio × BA		Main E		Bio × B A	1	Main E	
DIO Ilea	1011	0	2	4	of Bio	0	2	4	of Bio.	
0		1.056	1.169	1.389	1.205	0.870	0.869	0.650	0.797	
0		e	de	с-е	с	Ef	ef	F	с	
(1.500	1.575	1.778	1.618	1.125	1.333	1.533	1.330	
6		b-d	bc	a-c	b	De	cd	Bc	b	
10		1.890	2.028	2.083	2.000	1.389	1.708	2.161	1.753	
12		ab	а	а	а	b-d	b	Α	а	
T · ·			Г М Р 4		Main E		тмр	•	Main E	
Tecamin	max		$\Gamma.M \times BA$	•	of T.M		$\mathbf{T}.\mathbf{M}\times\mathbf{B}$	A	of T.M	
0		1.276	1.475	1.639	1.463	0.608	0.819	1.099	0.842	
0		с	bc	a-c	b	Ε	de	Cd	с	
-		1.528	1.547	1.694	1.590	1.138	1.286	1.564	1.329	
5		a-c	a-c	a-c	ab	Cd	bc	Ab	b	
10		1.642	1.750	1.917	1.769	1.639	1.806	1.682	1.709	
10		a-c	ab	а	а	Α	а	Α	а	
Main effect	t of BA	1.482	1.591	1.750		1.128	1.304	1.448		
		b	ab	a		В	ab	Α		

Means with the same letter are not significantly different according to Duncan multiple ranges test at 5% levelBranch numbersthat the Sweet orange seedlings treated with

Data in Table (3) shows that the branches number per seedling was significantly stimulatory by soil application of Bio health in different concentrations in both seasons, when compared with untreated seedlings, the highest values (15.34 and 15.22) for both seasons respectively provided when orange seedlings treated with 12 g.L⁻¹ of Bio health, whereas the lowest value of branches number from (12.89 and 6.87) was recording untreated seedlings in both growing seasons respectively. The effect of Tecamin max its notice in same Table that seedling gave the highest value (15.34 and 12.79) when seedlings were treated with 10 ml.L⁻¹ in the two seasons. Same Table shows that the Sweet orange seedlings treated with 200 mg.L⁻¹ Benzyl adenine in both seasons produced the significant highest number of branch when compared with other treatments, which were (16.04 and 12.13) respectively in both seasons and the lowest value (11.90 and 9.13) recorded in untreated seedling in both seasons. Concerning the interaction among the three studded factors, the maximum number of branches (18.250 and 18.375) for both seasons respectively was resulted from the interaction among 12 g.L⁻¹ Bio-health, 10 ml.L⁻¹ Tecamin max and 200 mg.L^{-1} Benzyl adenine compared to minimum number of branches (8.167&4.833) for both season respectively was resulted in untreated seedling.

Table 3. Effect of Bio health, Tecamin max and Benzyl adenine on average increase in plant
high of sweet orange seedlings

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bio × T.M 6.111 e 6.639 e
Bio health in max Benzyl adenine (BA)mg.L * 1.M × Benzyl adenine (BA)mg.L * g.L ⁻¹ ml.L ⁻¹ 0 100 200 BA 0 100 200 0 8.167 12.667 14.417 11.750 4.833 5.750 7.750 1 f-j b-g e K jk f-k 10.823 13.500 15.333 13.222 5.167 6.167 8.583	T.M 6.111 e 6.639 e
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.111 e 6.639 e
⁰ l f-j b-g e K jk f-k 10 923 12 500 15 223 12 222 5 167 6 167 8 593	e 6.639 e
I I-J D-G E K JK I-K	6.639 e
- 10.833 13.500 15.333 13.222 5.167 6.167 8.583	e
$0 \qquad 5 \qquad \begin{array}{c} 10.355 & 13.500 & 13.535 & 13.222 & 5.107 & 0.107 & 8.585 \\ i-k & d-i & b-g & d & Jk & h-k & f-k \end{array}$	
11 417 14 000 15 750 13 722 7 583 7 750 8 250	7.861
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	de
0 9.167 10.417 15.083 11.556 6.917 10.000 9.000	8.639
kl j-l b-g e g-k e-h f-j	d
12 750 13 000 16 017 14 222 7 750 0 375 10 250	9.125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d
	11.625
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	с
12 500 14 500 15 417 14 130 11 375 14 750 15 625	13.917
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b
14 222 15 222 16 082 15 250 12 125 14 500 17 275	15.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ab
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.750
b-g a-c a a a-c a-c A	a
Bio × BA Main E Bio × BA	Main E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	of Bio.
0 10.139 13.389 15.167 12.898 5.861 6.556 8.194	6.870
e c ab c E de D	с
6 11.639 13.417 16.389 13.815 8.139 10.167 11.083	9.796
d c a b D c C	b
12 13.944 15.500 16.583 15.343 13.417 15.125 17.125	15.222
bc a a a B b A	а
Tecamin max T.M × BA Main E T.M × BA	Main E
$\begin{array}{c c} 1 \text{ ccannin max} & 1 \text{ . M} \times \text{ bA} & \text{of T.M} \\ \end{array} $	of T.M
0 9.944 12.528 14.972 12.898 7.708 10.167 10.792	9.556
e d bc c D bc B	b
5 12.639 13.944 16.111 14.231 8.681 10.014 12.069	10.255
d cd ab b Cd bc Ab	b
10 13.139 15.833 17.056 15.343 11.028 11.667 13.542	12.079
d ab a a B ab A	a
Main effect 11.907 14.102 16.046 9.139 10.616 12.134	
of Benzyl adenine c b a C b A	

Means with the same letter are not significantly different according to Duncan multiple ranges test at 5% level Single leaf area $10ml.L^{-1}$ Tecamin max and 200 mg.L⁻¹

The results in Table (4) show significant differences in plant single leaf area maximum values (37.21 and 41.67) cm² respectively for the two seasons when Bio health added as soil fertilization with 12g.L⁻¹. For the foliar application of Tecamin max and Benzyl adenine data from same Table shows that the lowest value recorded in untreated seedlings in both seasons, when the seedlings treated with Tecamin max and Benzyl adenine the highest leaf area (36.24 and 41.18; 36.536 and 40.240 cm²) revealed in seedlings treated with

10ml.L⁻¹ Tecamin maximum leaf area 200 mg.L⁻¹ Benzyl adenine respectively for both seasons, as for the combination effect among application of the three factors, data noticed that the maximum leaf area (44.136 and 47.632 cm²) was obtained from the interaction of 12g.L⁻¹ Bio health+5ml.L⁻¹ Tecamin max + 100 mg.L⁻¹ Benzyl adenine in first season and from the interaction of $6g.L^{-1} + 10ml.L^{-1}$ Tecamin max + 200 mg.L⁻¹Benzyl adenine .and the minimum leaf area (25.925 and 24.553) recorded in untreated seedlings

Table 4. Effect of Bio health, Tecamin max and Benzyl adenine on single leaf area of sweet
orange seedlings

orange seedlings										
Treatments			2020 seas	on		2021 season				
Bio health	Tecam in max	Benzyl a	denine (B	A)mg.L ⁻¹	T.M×	Benzyl a	denine (B	A)mg.L ⁻¹	Bio ×	
g.L ⁻¹	ml.L ⁻¹	0	100	200	BA	0	100	200	T.M	
	0	25.925	32.107	35.532	31.188	24.553	29.109	30.965	28.209	
	U	f	d-f	b-d	С	k	Jk	h-k	f	
0	5	28.593	33.733	33.704	32.010	30.373	33.292	36.965	33.543	
U	5	ef	c-e	c-e	Bc	i-k	f-j	b-j	e	
	10	31.811	36.483	36.993	35.096	32.047	36.370	38.139	35.519	
	10	d-f	b-d	b-d	Ab	g-k	c-j	b-i	c-e	
	0	27.838	34.040	35.446	32.441	30.892	35.097	38.238	34.742	
	U	ef	c-e	b-d	Bc	h-k	d-j	b-i	de	
6	5	31.639	37.910	37.789	35.779	33.812	39.481	41.482	38.258	
U	3	d-f	b-d	b-d	Α	e-j	b-g	a-e	b-d	
	10	35.436	36.420	37.009	36.288	41.228	43.695	47.632	44.185	
	10	b-d	b-d	b-d	А	a-f	a-c	А	а	
	0	31.966	35.911	41.559	36.479	37.883	38.734	41.316	39.311	
	U	d-f	b-d	ab	Α	b-i	b-h	a-f	bc	
12	5	34.063	44.136	35.239	37.813	40.744	41.622	43.248	41.871	
12	5	c-e	a	b-d	Α	a-f	a-e	a-c	ab	
	10	36.808	39.723	35.553	37.361	42.643	44.692	44.176	43.837	
	10		a-c	b-d	А	a-d	Ab	a-c	а	
Bio hea	lth		Bio × BA		Main E		$\operatorname{Bio} \times \operatorname{BA}$		Main E	
DIO IIea	11111	0	2	4	of Bio.	0	2	4	of Bio.	
0		28.776	34.108	35.409	32.764	28.991	32.924	35.356	32.424	
U		d	bc	b	с	c	В	В	с	
(31.637	36.123	36.748	33.182	35.310	39.424	42.450	39.062	
6		cd	b	ab	b	b	Α	Α	b	
12		34.279	39.923	37.450	37.217	40.423	41.683	42.913	41.673	
12		bc	a	ab	а	a	Α	Α	а	
Tecamin	max		T.M × BA		Main E of T.M		T.M × BA		Main E of T.M	
		28.576	34.019	37.512	32.764	31.109	34.313	36.839	34.087	
0		_0.070 d	Bc	ab	b	f	Ef	с-е	c	
		31.432	38.593	35.578	34.836	34.976	38.131	40.565	37.891	
5		cd	A	ab	a	d-f	b-e	a-c	b	
		34.685	37.542	36.518	36.248	38.639	41.586	43.316	41.180	
10		bc	Ab	ab	a	b-d	Ab	43.510 A	a	
Main ef	fect	31.564	36.718	36.536	u	34.908	38.010	40.240	u	
of Benzyl a		b	A	a		b	A	40.240 A		
I song with the										

Means with the same letter are not significantly different according to Duncan multiple ranges test at 5% level Total chlorophyll (μ g.m²⁻¹) Tecamin max and Benzyl adenine at 10ml.L⁻¹

Data in Table (5) illustrates that the positive effect of all treatments on the chlorophyll content in sweet orange seedling whether added to the soil as Bio health or foliar application as Tecamin max and Benzyl adenine in both seasons, where the highest value of chlorophyll (208.32 and 208.04) that was produced from application Bio-health to the soil at 12g.L⁻¹ in both seasons. Also, the seedling had the highest value of seedling chlorophyll content when treated with

Tecamin max and Benzyl adenine at 10ml.L⁻¹ and 200 mg.L-1 respectively, where the values included it (207.11 and 200.6, 206.4 and 198.12) respectively in both seasons. Interaction effect among the Bio health or foliar application as Tecamin max and Benzyl adenine, highest chlorophyll content (215.384 216.058) was obtained from the and interaction of high concentration of these factors in first season and from the interaction of $12g.L^{-1} + 0$ ml.L⁻¹ Tecamin max + 0 mg. L⁻¹ ¹Benzyl adenine in second season.

orange seedlings										
Treatments		/	2020 season		-	2021 season				
Bio health	Tecamin max	Benzyl	adenine (BA)mg.L ⁻¹	T.M×	Benzyl	adenine (BA)mg.L ⁻¹	Bio ×	
$g.L^{-1}$	$ml.L^{-1}$	0	100	200	BA	0	100	200	T.M	
	0	169.536	180.407	193.542	181.162	161.713	173.269	181.134	172.039	
	U	i	Н	fg	d	h	G	d-g	e	
0	5	183.386	195.253	196.401	191.680	174.446	178.275	183.350	178.690	
U	5	gh	Ef	d-f	с	fg	e-g	d-f	d	
	10	194.666	204.688	210.460	203.271	177.147	184.759	186.306	182.737	
10	10	fg	a-f	a-c	b	e-g	de	de	d	
	0	182.102	195.727	205.428	194.419	172.289	180.410	184.893	179.197	
	U	h	d-f	a-f	с	g	d-g	de	d	
6	5	199.327	205.030	204.450	202.936	188.862	205.318	207.973	200.718	
0	5	b-f	a-f	a-f	b	d	bc	a-c	с	
	10	203.632	206.149	208.331	206.037	216.073	209.062	211.941	212.359	
	10	a-f	a-f	a-e	ab	а	a-c	ab	а	
	0	198.428	205.107	211.699	205.078	216.058	207.794	206.407	210.086	
	0	c-f	a-f	ab	b	а	a-c	a-c	ab	
10	-	203.525	207.849	212.217	207.864	202.096	208.689	211.240	207.342	
12	5	a-f	a-e	ab	ab	bc	a-c	a-c	ab	
	10	208.834	211.921	215.384	212.046	208.435	201.335	210.345	206.705	
	10		Ab	а	а	a-c	С	a-c	b	
D' - 1	- 141		Bio × BA		Main E		$Bio \times BA$		Main E	
Bio he	alth	0	2	4	of Bio.	0	2	4	of Bio.	
0		182.530	193.449	200.134	192.038	171.102	178.768	183.597	177.822	
0		f	Ε	cd	с	f	Ε	е	с	
		195.021	202.302	206.070	201.131	192.408	198.263	201.602	197.425	
6		de	Bc	bc	b	d	С	bc	b	
10		203.596	208.293	213.100	208.329	208.863	205.939	209.330	208.044	
12		bc	Ab	а	а	a	Ab	а	а	
. .					Main E				Main E	
Tecamin	n max		T.M × BA		of T.M		T.M × BA		of T.M	
•		183.356	193.747	203.556	193.553	183.353	187.158	190.812	187.108	
0		d	С	b	с	с	bc	b	с	
-		195.413	202.711	204.356	200.826	188.468	197.427	200.854	195.583	
5		с	В	b	b	bc	Α	а	b	
10		202.377	207.586	211.391	207.118	200.552	198.385	202.864	200.600	
10	1	b	Ab	a	a	a	Α	а	а	
Main e	effect	193.715	201.348	206.435		190.791	194.323	198.177		
of Benzyl		с	В	а		с	В	а		

Table 5. Effect of Bio health, Tecamin max and Benzyl adenine on total chlorophyll of sweet
orange seedlings

Means with the same letter are not significantly different according to Duncan multiple ranges test at 5% level Leaves carbohydrate carbohydrate found in seedlings when treated

According to the data in Table (6) shows that the application Bio health to the soil and foliar application of seedling by Tecamin max and Benzyl adenine especially with in high concentrations led to increase the leaves carbohydrate of sweet orange seedlings when compared with control, the best increase of cording to Duncan multiple ranges test at 5% level carbohydrate found in seedlings when treated with $12g.L^{-1}$ Bio health as it (9.68 and 7.36) respectively in both seasons, and the seedlings treated with 200 mg.L⁻¹ benzyl adenine gave the highest value (10.32 and 6.625) respectively for both seasons compared with control which produced less values in both seasons..

Table 6. Effect of Bio health, Tecamin max and Benzyl adenine on leaves carbohydrate of
sweet orange seedlings

Treatments			2020 seas		e seeding	b b	2021	season		
	Tecam									
Bio health	in max	Benzyl	adenine (B	A)mg.L ⁻¹	T.M×	Benzyl	adenine (B.	A)mg.L ⁻¹	Bio ×	
g.L ⁻¹	$ml.L^{-1}$	0	100	200	BA	0	100	200	T.M	
	0	6.133	9.877	9.154	8.388	4.033	4.725	5.346	4.701	
	U	Gh	a-f	a-g	b	f	ef	c-f	е	
0	5	6.807	9.091	10.073	8.657	4.438	6.037	4.743	5.072	
	5	e-h	a-g	a-e	ab	ef	c-f	Ef	de	
	10	5.512	8.695	10.170	8.125	4.480	5.393	6.268	5.380	
	10	Н	b-h	a-e	b	ef	c-f	b-f	с-е	
	0	6.822	8.370	9.910	8.367	5.741	6.133	7.777	6.550	
	U	e-h	c-h	a-f	b	c-f	c-f	a-c	a-c	
6	-	6.547	10.665	12.273	9.828	5.349	5.218	6.066	5.544	
6	5	f-h	a-d	a	ab	c-f	d-f	c-f	c-e	
	10	8.040	9.613	10.238	9.297	5.158	5.760	7.562	6.160	
	10	c-h	a-f	a-e	ab	d-f	c-f	a-d	b-d	
	0	9.690	10.140	10.008	9.946	6.472	7.321	6.821	6.871	
	0	a-f	a-e	a-f	ab	a-f	a-d	a-e	ab	
1.	5	8.362	10.858	12.013	10.411	6.503	8.630	7.608	7.580	
		c-h	a-c	ab	а	a-e	ab	a-d	a	
	10	7.280	9.713	9.120	8.704	6.792	8.711	7.432	7.645	
	10	d-h	a-f	a-g	ab	a-e	a	a-d	a	
			Bio × BA		Main E		Bio × BA		Main E	
Bio heal	lth	0	2	4	of Bio.	0	2	4	of Bio.	
		6.151	9.221	9.799	8.390	4.317	5.385	5.452	5.051	
0		D	Ab	ab	b	d	cd	Cd	c	
_		7.136	9.549	10.807	9.164	5.416	5.703	7.135	6.085	
6		Cd	Ab	a	ab	cd	c	Ab	b	
		8.444	10.237	10.380	9.687	6.589	8.220	7.287	7.365	
12		Bc	Ab	a	a	bc	a	Ab	a	
		20			Main E				Main E	
Tecamin	max		$T.M \times BA$	L	of T.M		T.M × BA	L	of T.M	
-		7.548	9.462	9.691	8.900	5.415	6.060	6.648	6.041	
0		C	B	ab	a	b	ab	Ab	a	
-		7.239	10.204	11.453	9.632	5.430	6.628	6.139	6.066	
5		C	Ab	a	a	b	ab	Ab	a	
		6.944	9.340	9.843	8.709	5.477	6.621	7.087	6.395	
10		C	B	ab	a	b	ab	A	a	
Main eff	fect	7.243	9.669	10.329		5.440	6.436	6.625	u	
of Benzyl a		B	A	a		5.440 b	a	A		
			·····		11- 4	. D	a		4 50/ 11	

Means with the same letter are not significantly different according to Duncan multiple ranges test at 5% level Same Table shows that there is no significant effect when the seedlings treated with Tecamin with different concentration when max compared with the untreated sweet orange seedlings in both seasons. The combination effect of the studied factors, the highest leave carbohydrate (12.273) was produced from the interaction of $6g.L^{-1} + 5ml.L^{-1} + 200mg.L^{-1}$ of Bio health, Tecamin max and Benzyl adenine in first season, whereas the highest leaves carbohydrate (8.711) was resulted from the interaction of 12g.L-1 + 10ml.L-1 + 100mg.L-1 of Bio health, Tecamin max and Benzyl adenine in second season

Leaves dry weight : It is generally clear from the results in Table (8) that, at the soil application of Bio health at both concentrations significantly increase leaves dry weight when compared with control, the highest value (0.783, 0.837) g for both seasons respectively were obtained in seedlings treated with 6g.L⁻¹ in first season and 12g.L-1 in second season, whereas the lowest value in leaves dry weight (0.593, 0.719) g were recorded in untreated seedlings.Concerning to the effect of Tecamin max of leaves dry weight of sweet orange seedlings in same Table found that the significant effect of Tecamin max when compared with control, the highest value (0.754, 0.831) g respectively in both seasons recorded when treated with 10 ml.L⁻¹ Tecamin max.As for the effect of Benzyl adenine on the leaves dry weight it was found that non-significant effect was recoded for both concentrations when compared with the control.Leaves dry weight was found to be influenced by the interactions among the studies factors in same Table show the best increasing leaves dry weight (0.886) g was found in seedling that treated with $(6g.L^{-1})$. 10ml.L⁻¹ and 0mg.L⁻¹) that included Biohealth, Tecamin max and Benzyl adenine respectively in first season, in the second season (1.072) g was recorded in seedlings treated with $(12g.L^{-1}, 10ml.L^{-1} \text{ and } 0mg.L^{-1})$ respectively included bio health, Tecamin max and Benzyl adenine .The lowest value (0.496, (0.582) g respectively in both seasons that in untreated Sweet orange seedlings.

Table 7. Effect of Bio health, Tecamin max and Benzyl adenine on leaves dry weight (g) of sweet orange seedlings

Treatments		2020 season 2021 season							
Bio health	T.M	Benzyl adenine (BA)mg.L			$T.M \times$	Benzyl adenine (BA)mg.L ⁻			Bio × T.M
1	1		1		BA		1		
g.L ⁻¹	$ml.L^{-1}$	0	100	200		0	100	200	
0	0	0.496	0.559	0.593	0.549	0.584	0.604	0.793	0.660
		i	g-i	f-i	с	g	fg	b-g	с
	5	0.545	0.587	0.599	0.577	0.674	0.850	0.776	0.767
		hi	f-i	e-i	bc	d-g	a-e	b-g	a-c
	10	0.607	0.655	0.699	0.654	0.672	0.803	0.718	0.731
		d-i	c-i	a-h	b	d-g	b-g	c-g	bc
6	0	0.730	0.850	0.699	0.760	0.617	0.827	0.923	0.789
		a-h	a-c	a-h	а	e-g	b-f	a-c	ab
	5	0.677	0.859	0.734	0.757	0.898	0.834	0.787	0.840
		b-i	Ab	a-h	а	a-d	b-f	b-g	ab
	10	0.886	0.840	0.769	0.832	0.977	0.850	0.792	0.873
		а	a-c	a-f	а	ab	a-e	b-g	a
12	0	0.782	0.732	0.792	0.769	0.799	0.757	0.817	0.791
		a-f	a-h	a-e	а	b-g	b-g	b-g	ab
	5	0.656	0.815	0.795	0.756	0.839	0.831	0.825	0.832
		c-i	a-c	a-d	а	b-f	b-f	b-f	ab
	10	0.762	0.745	0.822	0.776	1.072	0.794	0.799	0.888
		a-f	a-g	a-c	а	а	b-g	b-g	a
Bio health			Bio × BA		Main E		Bio × BA		Main E
		0	2	4	of Bio.	0	2	4	of Bio.
0		0.549	0.600	0.630	0.593	0.643	0.752	0.762	0.719
		с	С	с	b	с	bc	b	b
6		0.764	0.850	0.734	0.783	0.831	0.837	0.834	0.834
		ab	Α	b	а	ab	ab	ab	a
12		0.733	0.764	0.803	0.767	0.903	0.794	0.814	0.837
		b	Ab	ab	а	а	ab	ab	a
Tecamin max			$T.M \times BA$	1	Main E		$T.M \times BA$	1	Main E
					of T.M				of T.M
0		0.669	0.714	0.695	0.692	0.667	0.729	0.844	0.747
		ab	Ab	ab	b	с	bc	ab	b
5		0.626	0.754	0.709	0.696	0.804	0.838	0.796	0.813
		b	Α	ab	b	ab	ab	ab	ab
10		0.751	0.747	0.763	0.754	0.907	0.815	0.770	0.831
		a	Α	а	а	а	ab	bc	а
Main eff	ect	0.682	0.738	0.722		0.792	0.794	0.803	
of Benzyladeni	ine	а	Α	Α		а	а	a	

Means with the same letter are not significantly different according to Duncan multiple ranges test at 5% level The improvement of all the vegetative growth characteristics of local Sweet orange seedlings as a result of soil application of Bio-health, especially at a concentration of 12 g.L⁻¹, could be attributed to its content of humic acid, seaweed extract and microorganisms, as humic acids contribute to stimulating growth through

the content of organic compounds, amino acids, and mineral elements, especially potassium, which actively participates in many physiological processes, such as regulating the work of stomata, as its accumulation in the guard cells affects the osmotic pressure. The process directly affects the water relations inside the plant, including the absorption of water and nutrients from the soil (10, 22, 23). Humic acid contributes to activating the formation of chlorophyll pigment and the assembly of sugars, amino acids and enzymes (14), activating cell division, increasing the growth rate. developing the vegetative and root system, and increasing the dry matter in plant tissues (35). As for the role of seaweed extract in improving the vegetative growth of seedlings, it could be attributed to the inclusion of many nutrients such as vitamins and amino acids in its composition, which have a wide range of impact on the vital activities of the plant (2, 26) as well as "containing plant hormones, especially Auxins and cytokinin's that have an active role in increasing growth and stimulating plant height and side branching (34), and cytokinin's play a major role in stimulating the biosynthesis of chlorophyll in mature tissues, regulating the distribution of nutrients, opening stomata, and delaying leaf senescence (13). The positive role which Tecamin max has played is perhaps due to what it contains of amino acids which reached up to (23) amino-acids, that were necessary for plant growth, and which stimulate metabolism processes which in turn stimulate growth due to the production of necessary growth proteins, vitamins, and enzymes (11, 15), or perchance the increase is due to amino-acids working on supplying plants with nitro substances needed for growth and vital processes, which include the division and elongation of plant cells (18). The superiority of the high concentration of Benzyl adenine in the characteristics of vegetative growth could be attributed to the effect of this compound in increasing the strength of the leaves, branches and main stems, which increases the strength and speed pull of processed food and nutrients (4, 29), so Its growth increases, in addition to its role in regulating various processes such as cell division and differentiation, stimulating cell expansion and the movement of nutrients to a large degree (16), which affects the growth and development of the seedling, also contributes to controlling the effectiveness of the apical and lateral meristems, which leads to the emergence of new branches as well as delaying the aging of leaves through protecting the photosynthetic pigments from breakdown as well as the differentiation of chlorophyll (20).

REFERENCES

1. Al- Abbasi, Gh. B. A and F. F. A. Al-Zuhairi .2018. Effect of bio and organic fertilization on the growth of Pomelo seedlings *Citrus grandis* L. grafted on different rootstocks. Kufa Journal for Agricultural Sciences: (2) 10; 39-61

2. Al. Ani, M. R., F. F J. and M. J. Al-Kinany. 2008. Response of local orange sapling to irrigation with magnetized water and foliar spray with some mineral elements. Iraqi Journal of Agriculture science 39(3); 63-73.

3. Al-Himdany, Kh. A. and H.M. AL-Samarraay. 2018. Effect of AL-Disperchlorophyll, Salicylic Acid and Nutrition Solution Foliartal in Characteristics of Vegetative Growth of Mandarin – CV Clementine. First International and Third Scientific Conference of the College of Science - Tikrit University. pp 8-15

4. Al-Himdany, Kh. A.S., A. W. Taha and A. Kh. Authman. 2018. Effect Benzyl adenine spraying & addition of nutritional solution Prossol in Lemon Saplings growth Citrus limon. Burmann. First International and Third Scientific Conference of the College of Science - Tikrit University. pp;53-65

5. Al-Juboori, A. Y. S. 2016. Effect of Benzyl adenine and Gibberllic Acid on growth of two Citrus Root Stocks (*Swingle citrumelo* and *Troyer citrange*). Al Furat Journal of Agricultural Sciences, 8(2): 82-92

6. Al-Khafaji, A. M. H. H., N. J. K. Al-Amri, and N. H. A. Al-Dulaimi. 2022. Growth, yield, and antioxidant traits of different parts of beetroot as affected by vermicompost and glutathione. Iraqi Journal of Agricultural Sciences, 53(5): 1107-1114. https://doi.org/10.36103/ijas.v53i5.1623

7. AL-Obaidi, S. M. J., and H.A. Abdul-Ratha. 2021. Evaluation of the combination of bacterial bioferilizer and vermicompost in the availability of N, P, K and some of plant parameters of bean (*Phaseolus vulgaris* L.). Iraqi Journal of Agricultural Sciences, 52(4), 960-970.

https://doi.org/10.36103/ijas.v52i4.1406

8. Al-Silmawy. N. A. J. K., H.A.Abdul-Ratha. 2023. Effect of biofertilizer, vermicompost

and phosphate fertilizer on growth and yield of cauliflower (*Brassica oleraceae* var.botrytis). Iraqi Journal of Agricultural Sciences, 54(2): 505-515.

https://doi.org/10.36103/ijas.v54i2.1726

9. Al-Rawi, K. M. and A. Khalafalla. 2000. Analysis of Experimental Agriculture Design. Dar Al-Kutub Print. Pub., Univ. Mosul . pp:: 448 . (In Arabic)..

10. Ghaffoori, A.T. and A. F. Z. Al-Dulaimy. 2018. Effect of Spray of G.gana and Bio Health on some growth traits of local orange *Citrus sinensis* L. Saplings. Iraqi .J.Des.Stud 8 (1). ISSN:1994-7801

11. Attoa, G. E, H.E. Wahba and A.A. Farahat .2002. Effect of some amino acids and sulphur fertilizer on growth and chemical composition of iberis amara L. plant. Egypt. J. Hort.29:17-37

12. Buban, T. 2000. The use of benzyl adenine in orchard fruit growing: a mini review. Plant growth Regulation. 32 (2):381–390

13. Carey Jr., D.J. 2008. The Effects of Benzyladenine for Ornamental Crops. Thesis.M.S Horticultural Science, North Carolina State University. USA.pp;14-24

14.Chen Y., M. Nobili and T. Aviad .2004. Stimulatory effect of humic substances on plant growth. In: Magdoft F., Ray R. (eds): Soil organic matter in sustaiuable. Agriculture. CRC press Washington. pp.103-129

15. Coruzzi, G. and R. Last. 2000. Amino Acids. In: Biochemistry and Molecular Biology of Plants. B. Buchanan, w. Gruissem, R. Jones (eds). Amer.Soc. plant Biol.; Rockville, MD, USA. pp; 358-410

16. Davies, P.J. 1995. In: Plant Hormones physiology, Biochemistry a-nd Molecular Biology. (ed), 2nd Edition, Kluwer Academic Publishers, The Netherlands

17. Ennab, H. A. 2016. Effect of organic manures, biofertilizers and NPK on vegetative growth, yield, fruit quality and soil fertility of eureka lemon trees (*Citrus limon* (L.) Burm). J.Soil Sci. and Agric. Eng., Mansoura Univ., 7(10): 767-774

18. Gamal El-Din, K. M., S. A. Tarraf and L. K. Balbaa. 1997. Phyiological studies on the effect of some amino acids and microelements on growth and essential oil content in lemon grass (*cymbopogon citrates* Hort.) J.Agric Sci. Mansoura Univ. 22(12):4229-4241

19. Hildebrandt T.M., A. Nunes Nesi, W.L. Arau' jo, and H.-P. Braun .2015. Amino acid catabolism in plants. Mol. Plant. 8, 1563-1579 20. Immanen, J., N.Kaisa, S. Duchens, R. R. Fernanda, A. M. Lee, S. Herman, A. A.Victor, Torgeir and H. Ykia. R. H. 2013. Characterization of cytokinin signaling and homeostasis families in two hardwood tree Populus trichocarpa and Prunus species: persica. Licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0

21. Jugnake MO, M.B. patil and S.E. Shinde. 2017. Effect of biofertilizer and chemical fertilizer on growth and yield of sweet orange (*Citrus sinensis* L. Osbeck). International Journal of Chemical Studies. 5(6): 1061-1064

22. Karmegam, M.N. and T. Daliel .2008. Effect of vermicompost and chemical fertilizer on growth and yield of hyacinth bean, lablab purpureus, Sweet Dynamic Plant, 2 (1, 2): 77-81.

23. Kava, M., M. Atak, K.M. Khawar, C.Y. Cifici and S. Ozean. 2005. Effect of presowing seed treatment with zinc and foliar spray of humic acid on yield of common bean (*Phaseolus valgaris* L.) Turkey . Int . J. Agri. Biol. 7 (6): 875-878

24. Khehra S. and JS. Bal .2016. Influence of organic and inorganic nutrient sources on growth of lemon (*Citrus limon* L. Burm.) cv. Baramasi. J. Exp. Bio. Agric. Sci. 2014; 2(1S):126-129

25. Lal, G. and H. Dayal .2014. Effect of integrated nutrient management on yield and fruit quality of acid lime (*Citrus aurantifolia* Swingle). Afr. J. Agric. Res., 9(40):2985 – 2991

26. Martin, J. 2012. Impact of Marine Extracts Applications on cv. syrah grape (*Vitis vinifera* L.) yield components, harvest juice quality california polytechnic state University, San Luis Obispo. 2003. Cytokinins in macro algae. Plant Growth Regul. 41(1): 13 -24

27. Morgan, K.T. 2009. Response of young and maturing citrus trees grown on a sandy soil to irrigation scheduling, nitrogen fertilizer rate, and nitrogen application method. Hort Science., 44:145-150

28. Nelson, David L. and M. Cox, Michael .2005. Principles of Biochemistry (4th ed.), New York: W. H. Freeman, ISBN pp; 7167-4339-6

29. Neri, D., R. Biasi, S. Tartarini, N. Sugiyama, R. Giuliani, S. Sansavini and G. Costa. 1993. Sink strength as related to CPPU mobility and application site in apple and Kiwi fruit spurs. Acta Horticulturae, 329: 77 – 80 30. Nicolosi, E., Z.N. Deng, A. Gentile, S. La Malfa, G. Continella and E. Tribulato .2000. Citrus phylogeny and genetic origin of

important species as investigated by molecular markers. Theoretical and Applied Genetics. 100 (8): 1155–1166

31. Pratelli, R., and G. Pilot. 2014. Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 65:5535– 5556 32. SAS Institute. 2015. Base SAS 9.4 Procedures Guide. SAS Institute

33. Srivastava, A. K. .2012. Advances in Citrus Nutrition. Life Sciences, Biochemistry and Biophysics

34. Stirk, W., O. Novak, M. Strnad and J. Van Staden. 2003. Cytokinins in macroalgae. Plant Growth Regul. 41, 13–24. [Google Scholar] [CrossRef]

35. Tatini, M., P. Bertoni, A. Landi and M. L. Traversi .1991. Effect of humic acid on growth and biomass portioning of container-grown olive plants. Acta Hort. 294: 75-80.