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ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) that can tolerate heavy metals, provide the basis for
microbial inoculums showing heavy metals tolerance properties. This study was aimed to detect the
heavy metal resistance genes in plant-growth-promoting Pseudomonas spp. isolated from many
agricultural fields. The collected isolates were screened for their plant growth-promoting (PGP) traits,
hydrolytic enzymes, Siderophore, ammonia, and indole-3-acetic acid (IAA). Then, subjected to
concentrations of CuSO,, CdCl,, and ZnCl, to determine the minimum inhibitory concentration
(MIC). The DNA was extracted from the selected isolates then PCR test was achieved to detect copA,
copB, and czcA genes, responsible for heavy metal resistance. Seventy Pseudomonas spp. isolates were
obtained; 41 (58.57%0), 6 (8.57%), and 15 (21.42%) isolate produced protease, cellulase, and pectinase,
respectively. The isolates were positive for siderophore and ammonia production. However, 68
(97.14%) isolates have produced indole-3-acetic acid. Eight isolates were selected and identified as
Pseudomonas aeruginosa using the Vitek 2 compact system. The isolates’ resistance to heavy metals
differed significantly. The isolate B49 had a higher resistance to CuSO,(MIC = 3200 pg/ml) and ZnCl,
(MIC = 2600 pg/ml), while the isolate B66 recorded a higher resistance to CdCl, (MIC = 1000 pg/ml).
copB, and czcA genes were detected in the eight P. aeruginosa isolates, while copA gene was detected in
seven, except B69.
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INTRODUCTION

Microorganisms in the rhizospheric soil range
from beneficial to pathogens. The beneficial
bacteria such as Pseudomonas spp. and
Bacillus spp. have shown a potential role in
improving plant growth through nutrient
provide and producing many biological control

agents to face the  disease-causing
microorganisms (10, 42). Pseudomonas
species represent essential PGPR (Plant

growth-promoting rhizobacteria) that increase
crop yield through direct and indirect methods.
PGPR have several processes for controlling
plant pathogens and they also compete with
phytopathogens for resources and space (14,
38). Pseudomonas spp. is ubiquitous bacteria
with various applications because they exhibit
a many of diverse traits in different
environments, was utilized as a biocontrol
agent, plant growth promoter, source of
antibiotics and efficient bioremediation strains.
Plant growth-promoting systems traditionally
grouped direct and indirect processes (13).
Heavy metals, such as Zn, Cd, Ni, Cu, Pb, Cr
and Hg, are a common problem in agricultural
soil fields, and it is frequently caused by
industrial processes located nearby (9, 20).
These metals are hard to remove from the
environment, differ from many pollutants that
can be decomposed biologically or chemically
and are ultimately undegradable, so their
harmful effects last longer (3, 6). Bacteria
have evolved numerous resistance mechanisms
to cope with heavy metal stress. Several
resistance mechanisms involve heavy metal,
complexation, sequestration, metal conversion
to a less hazardous species, and direct metal
efflux out of the cell. Metals crossing the
bacterial cell may interact in many ways based
on their chemical properties and concentration.
When exposed to high levels, cells usually
respond by expressing unique systems of
resistance (P-type ATPases, CDF (cation
diffusion facilitator transporters), resistance-
nodulation-cell division) RND)efflux pumps,
metallothioneins)(35). Heavy metal resistance
responsible genes copA, copB, and czcA were
found in gram-negative bacteria such as
Pseudomonas syringae, Pseudomonas putida,
Pseudomonas  aeruginosa, Acinetobacter
baumannii, and Xanthomonas spp. CopA is a
P-type ATPase found in the periplasmic
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membrane, and CopB is a copper-binding
protein in the outer membrane that protects
against copper. The czcA gene is a member of
the Resistance Nodulation-Division (RND)
family found in the periplasm that serves as a
metal efflux pump protein for Cd and Zn (16,
23, 29). The objective of the current study was
to evaluate Pseudomonas spp. isolates as plant
growth promoters and heavy metals resistant
and detect the presence of genes responsible
for their resistance to Cu, Cd, and Zn.
MATERIALS AND METHODS

Samples collection

This study involved four agricultural fields of
Karbala, Baghdad, Hilla City, and the College
of Agriculture (lraq), from October 2020 to
January 2021. The soils samples were
collected from various types of rhizospheric
soils of different plants, Banana (Musa spp.),
Bean (Phaseolus vulgaris), Alfalfa (Medicago
sativa), Wheat (Triticum aestivum), Barley
(Hordeum vulgare), Jerusalem artichoke
(Helianthus tuberosus), Okra (Abelmoschus
esculentus), Conocarpus (Conocarpus spp.),
Mint (Mentha spp.), Corn (Zea mays), Barley
(Hordeum  vulgare), Wheat (Triticum
aestivum), Sunflower (Helianthus annuus),
and  Jerusalem artichoke  (Helianthus
tuberosus).

Isolation of Pseudomonas spp.

Serial dilutions were prepared from different
plants' rhizosphere. 1 g of soil was added to a
test tube was contained 9 ml of H,O (0.85%
NaCl), mixed thoroughly, and left to stand
before they formed successive serial dilutions.
A 100 pl of each 10, 10°, and 10° dilution
was spread on the surface of three agar media:
King's B, Pseudomonas isolation agar (PIA),
and Cetrimide agar, then incubated at 28°C for
48 h and re-cultured on the same media.
Different  colonies  were  purified in
MacConkey agar medium and subjected to
biochemical tests.

Extracellular enzymes production

Protease production was tested using skimmed
milk agar, 28 g skimmed milk powder, 1 g
Dextrose, 5 g Tryptone, 2.5 g Yeast extract,
and 15 g Agar (g L-1). The isolates that
formed clear zones, positive results, around the
colony were recorded after 24h of incubation
at 28°C (15). The test of cellulase production
was done using minimal medium, 2 g tryptone,
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4 g Na;HPO,4, 4 g KH,SO,4, 10 g CMC, 0.2 g
MgCl,, 0.004 g FeSO,, 0.001 g CaCl,, 20 g
agar (g L™), combined with 1% carboxymethyl
cellulose (CMC). After six days of incubation
at 28°C, the plate was treated for 15 minutes
with 0.1 % Congo red dye, followed by a 1 M
NaCl  solution.  Clear yellow zones
development indicates a positive result for
cellulase production (19). Pectinase production
was tested by combining pectin with M9
medium, 1 g (NH4),SO,4, 1 g Dextrose, 10 g
pectin, 0.5 g sodium citrate, 1.2 g yeast
extract, 20 g agar (g LY. The formation of a
clear zone when plates flooded with Lugol's
iodine solution for 10 minutes after three days
of incubation at 28°C denotes the isolate's
ability to produce pectinase (32).

Ammonia and siderophore production

The bacterial isolates were inoculated in 10 ml
peptone water for ammonia synthesis. After
48-72 h of incubation at 28 °C, the culture was
centrifuged, and the supernatant loaded with 1
ml of freshly prepared Nessler's reagent, the
positive test results a brown-yellow colour
(34). Siderophore production was determined
on a nutrient agar (NA) supplemented with
chelating 2,2-Bipyridyl solution (2 mg L™),
which filtered in NA at 45°C The growth of
isolates signalled a positive test (31).

Indole acetic acid (IAA) production

IAA production was determined using
Erlenmeyer flasks containing 50 ml of
Nutrient broth medium (NB) with 0.2% (v/v)
L- tryptophan. Flasks were inoculated with 2%
of bacterial growth (0.5 O. D; 1 x 10® CFU
ml™) and subjected to 120 rpm in a shaker
incubator at 28°C for 48 h. 10 ml of growth
sample was pipetted from each flask and
centrifuged for 15 min at 10000 rpm. The
supernatant was mixed with twice the volume
of Salkowski'sr reagent (1 ml of 0.5M FeCl;
and 49 ml of 35% HCIQO,) and re-incubated for
30 min at 25°C in a dark place, then estimated
calorimetrically at 530 nm (12).

Identification of bacterial isolates

Bacterial isolates were identified using the
Vitek 2 compact system. The activated

363

isolates, on MacConkey ager at 28°C for 24
hours, were used to prepare bacterial
suspension by transferring to 3 ml of sterile
saline. The turbidity was fixed at 0.5 OD using
the McFarland standard. The kit was added for
each tube and incubated for 18 hours in the
device.

MIC determination

The bacterial isolates were subjected to
CuSO,, CdCly, and ZnCl, on Mueller-Hinton
agar plate by a gradient concentration of heavy
metals. The concentration level of heavy
metals was started at 100 pg/ml and increased
by 50 pg/ml, except for the HgCl, increased by
10 pg/ml, plates then incubated for 48 h at
28°C. MIC was determined on the plate
medium when there was no visible growth (1)
DNA Extraction

DNA from the selected isolates were extracted
using the ABIOpureTM Total DNA kit
(ABIOpure, USA), according to the company
protocol. A Quantus Fluorometer was used to
quantify the nucleic acid concentration to
detect the integrity of DNA for downstream
applications. For DNA measurement, one pl of
DNA was added to 199 upl of diluted
QuantyFlour Dye and incubated at room
temperature for five minutes.

Detection of heavy metal resistance genes
PCR test was used to detect heavy metal
resistance genes using specific primers (Table
1) for amplifying the region 475bp

364bp and 206bp of copA, copB, and czcA,
respectively. The PCR reaction was carried out
in a 20ul volume, which was composed of
10ul master mix, lul forward primer, 1l
reverse primer, 2ul DNA template, and 6ul of
nuclease-free water. The program used was
illustrated in the Table 2. The PCR products
were analysed on the agarose gel
electrophoresis (1.5%, w/v), formed from 1X
TAE buffer with 1ul of ethidium bromide
(10mg/ml). The wells were loaded with PCR
products (10ul), then powered at 100v/mAmp
for 75 minutes. After that, the stained bands
were displayed under the uv
Transilluminator.
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Table 1. Primers of heavy metals resistances genes.

Gene Primer sequence 5'—3’ Annealing Product size
temperature
copA F CGGTCTCTACGAATACCGCTTCAA
R GAAATAGCTCATTGCCGAGGCGTT 55°C 475bp
copB  F TTCCTGCTCGACCAGTTGGAATAC
R GGTTGGTCAACAGGATGTCGTACT 58°C 364bp
czcA  F GTTCACCTTGCTCTTCGCCATGTT
R ACAGGTTGCGGATGAAGGAGATCA 56°C 206bp
Table 2. PCR program for amplification heavy metals gene of Pseudomonas aeruginosa.
Steps Temperature  Time (m:s) Number of Cycle
Initial Denaturation 95°C 05:00 1
Denaturation 95°C 00:30
Annealing copA 55°C 00:30
Annealing copB 58°C 00:30 30
Annealing czcA 56°C 00:30
Extension 72°C 00:30
Final extension 72°C 07:00 1
Hold 10°C 10:00

Statistical analysis

The data were statistically analyzed using
ANOVA by the Statistical Analysis System
program to compare the means of triplicate
samples with the least significant difference
(LSD) values (36).

RESULTS AND DISCUSSION

Isolation of Pseudomonas spp.

Bacterial isolates were gained from different
rhizospheric ~ soils, and  characterized
depending on morphological, cultural, and
biochemical characteristics. The isolates were
positive for oxidase, catalase tests, Simon
citrate, and motile, while negative for Gram
stain, indole, Voges-Proskauer, methyl red
and starch hydrolysis. Accordingly, seventy
isolates were mostly referred to Pseudomonas
spp. (15).

Hydrolytic enzymes production

The result in Table 3 shows that the seventy
isolates, 41 (58.57%) produced protease
enzyme on the skimmed milk agar, with a
zone varying between 2 and 14 mm. The
highest was B50 (14 mm), followed by B55
(12 mm), while B32, B47, and B69, showed
10 mm in diameter. Only four (5.71%)
isolates can produce cellulase in the CMC
agar medium. The clear zone varies between
3 and 23 mm, the higher strain was B66 (23
mm) followed by B69 (20 mm) and B61 (13
mm). In addition, 15 (21.42%) isolates were
pectinase producers in the M9 minimal
medium. The zone of pectinase varied
between (6-20 mm). B7 strain was the higher
(20 mm), followed by B48 and B66 (15mm).
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Lytic enzymes can inhibit the growth or
suppression of phytopathogens by degrading
the fungal cell walls. Chitin and fibrils of
glucan are incorporated into the protein
matrix, that's why proteases play an essential
role in fungus cell wall destruction (22).
Alsalim (8) reported the production of
hydrolytic enzymes by Pseudomonas spp. and
found that all isolates were positive for
protease and pectinase, while 66.6% of them
could produce cellulase. Other researchers
isolated 87 Pseudomonas species from the
tomato (Lycopersicon esculentum)
rhizosphere. They reported that only 30, 28,
and 12 isolates were positive for protease,
cellulase, and pectinase, respectively. Also
found that the lytic enzymes in 30 isolates
have antagonistic activity against the plant
pathogenic bacterium Ralstonia
solanacearum (39). Another study isolated
three Pseudomonas fluorescens isolates from
the plant rhizosphere, their results showed
that the three strains were positive for
protease, while negative for cellulase,
chitinase, and glucanase (41)

Siderophore and ammonia production

In this study, the siderophore test was positive
for all the isolates (Table 3). The seventy
isolates revealed a growth on the 2,2
dipyridyl-containing agar media after 48
hours of incubation, which could contribute to
their antifungal activity. The qualitative test
of ammonia production in peptone water
revealed that all isolates were positive, the
colour changed to yellow or brown in peptone
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water of old culture. In their study,
Kotasthane et al. (24) mentioned that out of
twenty-nine only eight isolates produced
siderophores in the presence of 8-
Hydroxyquinoline (50 mg/l). The eight
isolates have antagonistic effects against
Rhizoctonia solani and Sclerotium rolfsii. In
another study, P. asplenii, P. fluorescens, and
P. aeruginosa isolates showed a high level of
inhibition against Rhizoctonia solani, 93.15%,
88.70%, and 86.85%, respectively, with the
ability to synthesise siderophore and
ammonia production ability of all the isolates
(5). Agrawal et al. (2) reported that twenty-
four fluorescent Pseudomonas isolates
subjected to different siderophore assays were
shown to produce siderophores on an iron-
deficient succinate medium.

Rana et al. (34) reported that twenty
Pseudomonas fluorescent isolates, collected
from apple orchards, were exhibited a positive
result in ammonia and siderophore synthesis.
Indole-3-acetic acid (IAA) production

The amount of indole-3-acetic acid produced
by Pseudomonas spp. isolates, evaluated
quantitively in NB broth, was ranged from
1.20+£0.03 to 35.15+0.76 pg/ml (Table 3).
IAA has a role in the extension, division, and
differentiation of plant cells. IAA also
promotes the growth of lateral roots and root
hairs, which increases nutrient uptake by
surfaces and may result in higher levels of
nutrient absorption and dramatically improve
the plant's shoot length (40). The highest IAA
producing strain was B49 (35.15+0.76 pg/ml)
followed by B46 (28.59+0.05 pg/ml) and B4
(26.98+0.42 pg/ml). Sandilya et al. (37)
reported that eight Pseudomonas spp. isolates
derived from castor rhizosphere showed I1AA
production in vitro ranged from 5.19 pug/ml to
27.84 pg/ml. The strain RTE4 of
Pseudomonas aeruginosa, isolated from tea
rhizosphere, was tested by Chopra et al. (13),
and they found high indole acetic acid
production (74.54 pg/ml) after seven days of
incubation. Wadekar and Kagne (40) isolated
25 Pseudomonas spp. from the rhizosphere of
soybean. Their results showed the highest
IAA production, which reached 19.34 pg/ml,
was by the strain S3 after 48 h of incubation
on King's B. Akter et al. (5) reported that P.
asplenii and P. fluorescens isolates collected
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from rice plants were shown to have a
maximum IAA production reached 51 pg/mi
and 52 pg/ml, respectively, while P.
aeruginosa did not produce I1AA. Ali et al. (7)
found maximum IAA production by P.
aeruginosa (8.95 pg/ml) during testing 12
bacterial isolates. Two isolates belonging to
P. aeruginosa (JB and JC) were isolated from
Solanum melongena and Capsicum annuum
and synthesised IAA by 15.54 and 23.38
pg/ml, respectively (30).

Isolates identification

Based on the previous data, eight isolates
(Table 3) were selected and identified by the
Vitek 2 compact system. The results revealed
that all belong to Pseudomonas aeruginosa.
Heavy metals resistance

The resistance profile to the heavy metals
CuSO4, CdCl,, and ZnCl, for eight P.
aeruginosa isolates, was carried out on
Mueller-Hinton agar. The results in Table 4
demonstrate that MIC values to the Copper
were extending from 800-3200 pg/ml. The
B49 strain has recorded a higher MIC value
(3200 pg/ml) which differs significantly from
other strains, followed by the B46 strain
(2800 pg/ml). The MIC values for Cadmium
resistance were ranging from 600-1000 pg/ml
and the strain B66 recorded a higher MIC
(1000 pg/ml) differs significantly from other
strains. The resistance to Zinc, represented in
the form of MIC values, was extending
from1050-2600 pg/ml. The strain B46
recorded the value 2600 pg/ml which differs
significantly from the other strains. Metals
resistances ~ were  appeared to  be
heterogeneous among P. aeruginosa isolates,
and B49 has a higher resistance to copper
sulphate and zinc chloride when compared to
other bacterial isolates Ghaima et al. (17).
found that the MIC rates of cadmium have
been ranging from 600 to 900 mg/l for P.
aeruginosa that isolated from Al-Dora
agricultural soil, while the MIC for Copper
and Cadmium was 3600 pg/ml for the strain
KZ5 of Pseudomonas aeruginosa, according
to Benhalima et al. (11). Akinbowale et al. (4)
isolated 129 strains of Pseudomonas from
different Australian farms. The majority of
the isolates showed 800 pg/ml MIC values for
Cd and Co, more values for Cu and Pb (1600
pg/ml), and the highest for Cr and Pb (3200
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ug/ml), while MIC for Mn was more than
3200 pg/ml.  Pseudomonas aeruginosa
exhibited a resistance to Pb?* Cu**, Cd? the
minimum inhibitory concentration ranged
between 100 and 500 ppm, while it was
showed no resistance, no growth, in the
presence of Ag*" and Hg®* (28). Malik and
Aleem (26) isolated 96 strains of
Pseudomonas spp. from soils, they noticed

that most isolates had MIC values up to 3,200
pg/ml and some up to 1,600 pg/ml, and
91.6% of them were resistant to Pb** and
Cu?, while 62.5% were resistant to Zn*".
Another study by Imron et al. (21) mentioned
that P. aeruginosa isolated from sanitary
landfills exhibited MIC values of more than
20 mg I” * for Zn, Mg Cd and Pb, using the
disk diffusion method.

Table 3. Plant growth traits of Pseudomonas spp.

No. *Prot  Cell. Pect.  Sid. NH; 1AA No. Pro. Cell. Pect. Sid. NH; 1AA
(mm) (mm) (mm) (Hg/ml) (mm) (mm) (mm) (Hg/ml)
B1 - - - + + 1292+0.17 B36 8 - - + + -
B2 + + 9.80+0.08 B37 4 - 9 + + 3.36+£0.03
B3 + ++ 8.31+0.19 B38 8 - - + + 6.68+0.15
B4 + ++ 26.98+0.42 B39 - - - + + 4,79 £0.02
B5 + ++ 9.17+0.12 B40 7 - 8 + + 3.61+0.07
B6 - + + 12.89+0.15 B4l - - - + + 7.94+0.21
B7 9 20 ++ ++ 1480+0.89 B42 - - + + 16.40 £ 0.46
B8 2 - + + 16.86+0.43 B43 5 - + ++ 21.68+0.51
B9 4 8 + ++ 13.47+037 B44 8 - + ++ 24.21+0.62
B10 + ++ 11.79+0.23 B45 - - + ++ 6.8 £0.0.05
B11 + ++ 5.77 £0.06 B46 8 - + +++ 28,59 +0.05
B12 + ++ 1.76 £0.02 B47 10 - - ++ + 3.52+0.24
B13 ++ ++ 1412+ 0.44 B48 8 - 15 + ++ 4.41+0.04
B14 + + 6.47 +0.16 B49 6 - 12 ++ ++ 35.15+0.76
B15 + + 1.20+0.03 B50 14 - 8 ++ ++ 2.85+0.013
B16 + + 6.95+0.33 B51 9 - + + 5.57 £0.016
B17 + + - B52 8 - - + + 3.88+0.02
B18 + + 145+0.15 B53 9 - 8 + + 4,19+ 0.04
B19 2 + + 6.77 £0.20 B54 - - - + + 3.67+0.02
B20 - + ++ 9.54 +0.16 B55 12 - 8 + + 24.41 +0.57
B21 6 10 + ++ 16.11+0.26 B56 7 - + ++ 9.58+0.19
B22 - - ++ ++ 6.51+0.08 B57 - - - + ++ 6.99+0.11
B23 8 ++ + 2.53+0.04 B58 8 - 9 ++ ++ 1498 + 0.67
B24 8 + + 217+0.16 B59 6 3 - ++ ++ 24.96 £ 0.30
B25 9 6 +++ +++ 9.82+0.15 B60 9 - ++ ++ 5.61+0.03
B26 8 + ++ 3.60+0.04 B61 9 13 ++ ++ 7.83+0.19
B27 - ++ ++ 3.89+0.08 B62 5 - ++ + 21.44+0.2
B28 + + 5.74+0.09 B63 8 - + ++ 11.43+0.56
B29 + + 16.90 +0.27 B64 6 - + ++ 7.72+0.10
B30 + + 6.45+0.13 B65 8 - - + + 6.03+0.10
B31 - + ++ 11.53+0.43 B66 9 23 15 ++ ++ 12.20+0.19
B32 10 + ++ 20.06 +0.57 B67 4 - - ++ + 6.35 +0.02
B33 - - - + ++ 8.55+0.15 B68 6 - - + + 8.32+0.09
B34 8 - - + + 1491+058 B69 10 20 11 ++ ++ 4,59 +0.06
B35 9 - 13 + + 5.76 + 0.06 B70 8 - - + + 11.57+0.15
3.981 4.077 3.649 1.0 1.0 7.441 **
LSD value (P<0.01). il il il NS NS

* Prot., Protease (mm); Cell., Cellulase (mm); Pect., Pectinase (mm); Sid., Siderophore.; IAA, Indole-3-acetic acid

**Siderophore and NH; : low +, medium ++, high +++;

Table 4. The MIC of heavy metal in Pseudomonas aeruginosa

Isolate CuSO, CdCl, ZnCl,

pg/ml pg/ml pg/ml

P. aeruginosa B7 1800 950 1050
P. aeruginosa B25 2600 600 1800
P. aeruginosa B40 1600 850 2400
P. aeruginosa B46 2800 700 2250
P. aeruginosa B49 3200 900 2600
P. aeruginosa B50 2200 850 1250
P. aeruginosa B66 2700 1000 1850
P. aeruginosa B69 800 600 1100
LSD value (P<0.01). 271.48 84.52 163.87

Detection of heavy metals resistance gene in
Pseudomonas aeruginosa

The eight studied P. aeruginosa isolates were
subjected to PCR amplification to detect the
presence of the genes responsible for their
resistance to Cu, Cd, and Zn, copA, and copB
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genes for Cu and czcA gene for Cd, and Zn.
The copB and czcA genes were observed in all
eight isolates, while the copA gene was
observed in only seven isolates (Figure 1). The
CopA and copB genes’ presence were
confirmed by many researchers in P.
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aeruginosa that showed heavy metal
resistance. Martins et al. (27) isolated two
tetracycline-resistant strains of P. aeruginosa
(EW32 and EW33) from a polluted
environment and detected copA, copB and
czcA genes presence using PCR. They said that
treatment of numerous pathogenic bacteria in
humans and animals can be limited due to the
exchange of resistance genes between
environmental and pathogenic bacteria. Their
study observed that the EW32 strain was
positive for copA, copB and czcA genes, while
the EW33 strain was positive only for the czcA
gene. Pitondo- Silva et al. (33) detected the
occurrence of the genes in sixty-four P.

1500bp
1000bp

500bp

100bp

COpA
55¢

(A)

100

475bp

aeruginosa that were isolated from different
crops of five Brazilian regions. Their study
showed that the most common existence of
heavy metals resistance genes for copB, copA
and czcA were 65%, 48% and 46%,
respectively. Li et al. (25) mentioned that
copA and lipoprotein had a role in the
sequestration and efflux of copper out of the
cytoplasm and proposed a response model for
Pseudomonas spp. under higher concentrations
of copper. They noted the reduction in cell
size, which leads to reducing the quantity of
copper bonded around the cell surface, and
less energy had required to maintain

themselves during copper stress.
M 1 2 3 4 5 6 7 8

1500bp

1000bp

500bp
364bp

100bp

copB
S8C

(B)

206bp

Crea

(©)
Figure 1. (A), (B) and (C) showed amplification products of copA (475bp), copB (364bp) and
czcA (206bp) of P. aeruginosa isolates in 1X-TAE buffer and 1.5% Agarose gel.
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CONCLUSION

Results indicate that several Pseudomonas spp.
isolated from rhizospheric soil showed many
plant growth promotion traits. These traits
were protease, cellulase, pectinase,
siderophore, ammonia, and IAA production.
They are offering an alternative fertilizer
(biofertilizer) and pesticide (biopesticide), as
they exhibited these traits. Based on this
study's obtained data, the eight P. aeruginosa
strains have varied resistance to the examined
heavy metals, as they showed high MIC values
of resistance for Cu, Cd, and Zn. The detection
of copA, copB, and czcA genes, which play a
role in the efflux pump of heavy metals,
approved the genes' presence. P. aeruginosa

can be  promising  candidates  for
bioremediation of polluted soils.
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