COMPARATIVE STUDY OF HISTOPATHOLOGICAL CHANGES BETWEEN NANO-BORON AND BORON IN SMALL INTESTINE OF LAYER CHICKENS

Abtisam J. A. A. Q. Al-Awadi B. H. Ali
Assist. Prof. Assist. Prof. Prof.
Coll. Vet. Med., University of Baghdad
ebtisam.j@covm.uobaghdad.edu.iq

ABSTRACT
The aim of this study was to compare the effect of boron and nanoboron" on histomorphology of the small intestine in layer chickens. 210 day-old chicks were used and were randomly assigned to seven equal groups. The experiment, groups were exposed to both normal boron and nano boron as follows:G1 received 15 mg/L of boron in their drinking water, G2 got 25 mg/L, G3 got 45 mg/L, while groups nano boron as following G4 got 15 mg/L, G5 got 25 mg/L, G6 got 45 mg/L of nano-boron, and G7 was not given any treatment. By using a light microscope, the histomorphology result of intestine was examine to determine the villi's height, thickness, crypt depth, and muscle thickness. The measurements of villi height, crypt depth, and muscle thickness showed a significant difference (P≤0.05) between all treated groups (nanoboron at G5,G6 than normal boron) in comparison with control group, with the highest mean in G6(NB) in all measures of intestine. The findings of this study concluded that the adding of "boron and nanoboron" to consumption water improved the structure of intestine, and this was particularly evident at high nanoboron concentrations.

Keywords: intestinal health, histomorphology, poultry, minerals

Received: 23/9/2022, Accepted: 29/1/2023
INTRODUCTION
The requirement for rare mineral elements has increased due to the increase in production and growth rates, these elements are crucial nutrients for the growth and production of poultry, and a shortage of one or more of these nutrients causes a serious decline in the health of the birds (1). One of these is boron, which has been recognized as a necessary component for plants since 1923, early in the 1980s, the impact of boron on a variety of bioactivities and metabolic processes, including enzymes and steroid hormones, led to the discovery of its involvement in human and animal nutrition (19). Additionally, it plays a crucial and effective part in the metabolism of calcium, phosphorus, and magnesium and in the development and growth of poultry birds (13). Nanotechnology is one of the many advancements that the poultry business has witnessed in recent years. This exciting and rising technology has the potential to revolutionize the poultry industry globally. Nanoparticles typically range in size from 1 to 100 nm. In the field of breeding poultry, this method is applied on a large scale, these nanoparticles can therefore transmit the feeding ingredients across tissues and cell membranes by bypassing normal distribution mechanisms. (1). Because of its extremely effective characteristics, substantial surface area, and superior absorption capacity when compared to boron element, nano-boron has been exploited as a novel source for boron. The conclusions reached by Mousa and Ali (16) revealed that the broiler chicks' drinking water contained nano-boron particles, growth performance significantly improved compared to the control group. Modern strains most vulnerable to treatment for poultry from rare mineral elements became very high due to their rapid growth and rate, besides it has a high metabolism to be highly productive of both meat and eggs (1, 11). Due to the dearth of research on the use of nano-boron particles in poultry diets, this study was carried out to ascertain the best concentrations of boron and nanoboron particles added to poultry diets that we might advise and to investigate the impact of these particles on the intestinal performance of layers chickens.

MATERIALS AND METHODS

Birds management: The experiment was conducted at the poultry farm of Veterinary Medicine in University of Baghdad. Chicks were supplied by the appropriate lighting system, clean wood shavings as litter and water which were provided (ad libitum) (3, 4, 5).

Study design = Two hundred and ten one day old chicks were weighted and allocated into seven groups at random. The experimental groups underwent the following exposure throughout the experiment: (G1,G2,G3) treated with (15, 25 and 45) mg/ml boron respectively in drinking water and (G4,G5,G6) treated with (15, 25 and 45) mg/ml nano boron respectively in drinking water and control group G7 not treated. The experimental period lasted for 40 days. In order to identify the "crystalline structure" of the nano-boron, a laboratory X ray diffractometer (XRD 6000) was used to analyze the boron nanoparticles that Commercial Corporation had bought from China (14).

Sampling: The tissue samples were fixed by 10% formalin for two days, then prepared for paraffin embedding technique and sectioned at six μm with rotary microtom. The organs sections have stained with hematoxylin and eosin stain (7). The tissue were examined and measured the villi height, thickness and depth of crypts by The Future Win Joe microscopic camera was used for light microscopy and microphotography, and the Fiji image analyzer system was used to evaluate and score the photos (6, 22).

Statistic evaluation
Using SAS, data analysis was done statistically to determine whether there were significant differences between the means, a one-way ANOVA and least significant differences (LSD) (18).

RESULTS AND DISCUSSION
The results in the current study revealed a significant difference (P≤0.05) between all treated groups (nanoboron (822.56±36.06, 781.78±11.42, 748.04±28.36) then normal boron 670.58±40.05, 515.66±26.59, 479.63±13.26) in villi height compared with control group, also there's a significant difference (P≤0.05) between groups treated...
with nanoboron G6 and G5 compared with G3, G2, G1, the highest mean of villi height in G6(NB) (822.56±36.06) followed by G5 (781.78±11.42a), the results of Depth of the crypts revealed significant difference (P≤0.05) between nanoboron groups G6 and boron group G1 also found significant difference (P≤0.05) between G6, G5, G4 and G3 compared with G7 control group, the highest mean of depth of the crypts in G6(NB) (144.93±10.83a) finally the results of muscle thickness revealed significant difference (P≤0.05) between groups treated with nanoboron G6, G5, G4, compared with boron groups (G2, G1 and G7 control group) also the highest mean of muscle thickness in G6(NB) (208.04±6.65a) with significant difference (P≤0.05) compared with all groups.

Table 1. Histomorphological of small intestine in layer chickens broiler treated with different concentrations of Boron and Nanoboron (Mean ± SE)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Villi height</th>
<th>Depth of the crypts</th>
<th>muscle thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>479.63±13.26c</td>
<td>120.94±11.12bc</td>
<td>118.15±6.36d</td>
</tr>
<tr>
<td>2</td>
<td>515.66±26.59c</td>
<td>126.41±4.64abc</td>
<td>121.20±11.93d</td>
</tr>
<tr>
<td>3</td>
<td>670.58±40.05b</td>
<td>138.47±6.66ab</td>
<td>125.66±16.98cd</td>
</tr>
<tr>
<td>4</td>
<td>748.04±28.36ab</td>
<td>138.08±8.19ab</td>
<td>153.44±5.38bc</td>
</tr>
<tr>
<td>5</td>
<td>781.78±11.42a</td>
<td>140.94±5.24ab</td>
<td>176.38±12.41b</td>
</tr>
<tr>
<td>6</td>
<td>822.56±36.06a</td>
<td>144.93±10.83a</td>
<td>208.04±6.65a</td>
</tr>
<tr>
<td>7</td>
<td>326.16±16.60d</td>
<td>104.06±7.85c</td>
<td>101.33±8.16d</td>
</tr>
<tr>
<td>LSD</td>
<td>80.79</td>
<td>23.12</td>
<td>28.70</td>
</tr>
</tbody>
</table>

Means in the same column with a different letters are substantially different (P≤0.05)
The main digestive and immunological organ, the intestine, not only absorbs nutrition but also guards against pathogens and antigens from entering the body (20). Previous research demonstrated that the breakdown of the intestinal mucosal can result in the transfer of pathogenic bacteria and toxins to the systemic circulation, which then triggers the release of numerous proinflammatory cytokines that may produce harmful byproducts like oxygen free radicals, which ultimately lead to organ dysfunction (7,8). A type of trace element called boron has a wide range of biological applications and is primarily absorbed by digestive system, respiratory tract, and skin (1,2). Previous studies have demonstrated that boron at low doses can prevent the apoptosis of bone and thymus cells, however boron at high doses had the reverse effects. (9, 26) In current research, we found that the nano boron and normal boron caused improvement in villi, crypt depth and muscle thickness and this result is more obvious in 45 mg/L of nanoboron followed by 25 mg/L of nanoboron group, which indicates improvement of the intestinal mucosal barrier function(22). Because of its extremely effective characteristics, substantial surface area, and superior absorption capacity when compared to boron element, nano-boron has been exploited as a novel source for boron (16) Boron may have an impact on how well cells act as antioxidants, a sufficient amount of boron could boost the ability to remove free radicals and decrease lipid peroxidation by increasing the activity of antioxidant enzymes (12). Also, boron may have an impact on "the mitochondrial pathway's caspase-3 gene expression". which caspase-3 is essential for this pathway and that boron suppresses gene production at low doses while promoting it at large doses,(15,24).The doses of 45 and 25mg/l consider low doses because another studies by Sun et al.(23) found that high doses,80, 320 and 640 mg/L of boron caused destruction of the intestinal mucosal barrier function , previous research have shown that boron has a role a function in the growth and development of birds(10,25). Hypothesizing boron's potential role in cell development and proliferation(25). According to Park et al. (17), borate was substantially mitogenic at relatively low doses but lethal at high quantities. in the current study, indicating that nano boron activated high-mitotic-activity immature stem cells in the basal crypt compartment. This may suggest that nanoboron has a positive impact on the intestine's absorption surface in chickens and improves the morphological characteristics of the intestinal mucosa.

REFERENCES