P- SOLUBILIZING MICROORGANISMS PERFORMANCE ON MANURE AND ROCK PHOSPHATE AND THEIR INFLUENCES ON SOIL AND PLANT PHOSPHOROUS IN CALCAREOUS SOILS

M. I. Umar

Assist. Prof.

Department of Soil and Water Sciences, College of Agriculture, University of Duhok, Kurdistan region, Iraq.

artoshy72@yahoo.com

ABSTRACT

Phosphate solubilizing microorganisms were isolated in vitro experiment, and wheat crop were planted in pots for 5 month and treated with rock phosphate, manure and with combination treatments of rock phosphate, manure, and phosphate solubilizing microorganisms to compare with control treatment. The result shows that the solubilizing index ranged between 1.4 to 1.6 for isolated microorganisms, the decrease in soil pH which have enormous influence in phosphate solubility were significantly influenced by the addition of phosphate solubilizing microorganisms and manure is 6.5 pH comparing with 8 pH for control. Soil soluble and extractable phosphorous also increased by combination of phosphate solubilizing microorganisms and manure recording 0.46 ± 0.03 ppm and 10.7 ± 1.01 ppm respectively comparing to 0.39 ± 0.01 ppm and 0.75 ± 0.11 ppm for control after one month of experiment, and this significance continued to 3 and 5 month after planting followed by the combination treatment of rock phosphate and phosphate solubilizing microorganisms. Total phosphorous in both wheat shoot and root after 5 month of planting were increased significantly by the addition of phosphate solubilizing microorganisms. Total phosphorous in both wheat shoot and root after 5 month of planting were increased significantly by the addition of phosphate solubilizing microorganisms and manure to record $0.792\pm0.11\%$ in shoot and $0.66\pm0.13\%$ in roots and more than other treatments, however the translocation of phosphorous is harder than nitrogen from roots to shoots. The addition of phosphate solubilizing microorganisms enhanced the growth ratio of wheat up to 96 ± 5 comparing to 40 ± 3 for control.

Key words: Phosphate solubilizing ,solubility , extractable ,fertilizer.

المستخلص

تم عزل الكائنات الحية الدقيقة المذيبة للفوسفات في التجربة المختبرية ، وزرع محصول القمح في الأصص لمدة 5 أشهر وعوملت بالفوسفات الصخري والسماد الحيواني مع معاملات تداخلية من الكائنات الحية الدقيقة المذيبة للفوسفات والفوسفات الصخري والسماد الحيواني مع معاملات تداخلية من الكائنات الحية الدقيقة المذيبة للفوسفات والفوسفات الصخري والسماد الحيواني مع معاملات تداخلية من الكائنات الحية الدقيقة المذيبة للفوسفات والفوسفات الصخري والسماد الحيواني مع معاملات تداخلية من الكائنات الحية الدقيقة المذيبة للفوسفات والفوسفات الصخري والسماد الحيواني مع معاملات تداخلية من الكائنات الحية الدقيقة المعزولة ، وقد الحيواني لتقارن بمعاملة السيطرة . أظهرت النتائج أن مؤشر الذوبان تراوح بين 1.4 إلى 1.6 إلى 10.6 للكائنات الحية الدقيقة المغزولة ، وقد والسماد الحيواني ليصل 2.6 معاملة الميروان الفوسفات بشكل كبير بإضافة الكائنات الحية الدقيقة المذيبة للفوسفات من المعاد الميواني ليصل 2.6 معان لها تأثير هائل في ذوبان الفوسفات بشكل كبير بإضافة الكائنات الحية الدقيقة المذيبة للفوسفات من والسماد الحيواني ليصل 2.6 معارفة مع على 8 لمعاملة السيطرة. كما زاد الفوسفور القابل للذوبان في التربة والقابل للاستخلاص من خلال الجمع بين الكائنات الدقيقة المذيبة للفوسفات والسماد الحيواني وتسجيل 2.6 مع ما 4.0 من الذوبان في التربة والقابل للاستخلاص من التوالي مقارنة بينا المائنات الدقيقة المذيبة للفوسفات التراع يتبعها معاملة السيطرة بعد شهر واحد من التربة ، واستمرت هذا التاثير بعد 3.0 و 5.0 لي معاملة السيطرة بعد شهر واحد من التجربة ، واستمرت هذا التاثير بعد 3 أشهر من الزراعة يتبعها معاملة الفوسفات الصخري مع الكائنات الحية الدقيقة المذيبة للفوسفات. تما زيلالي عد 3.0 و 5.0 لي من الميراني في مالماد الحيوي واحد من التجربة ، واستمرت هذا التاثير في كل من الحيور في معاملة السيطرة بعد شهر واحد من التجربة ، واستمرت هذا التاثير بعد 3.0 و 5.0 مع ما كائنات الحي في ماملة الكائنات الديقة المذيبة للفوسفات والماد وو كل من المجموع الخضري والجذري بالغام ما الزراعة بشكل كبير في معاملة الكائنات الدوقية المايماد وي في كل من المجموع الخضري والجذري في الكرى ، ولكن في في أخواني في الحيوي في كا من المجموع الخضري والمحموي الخاموي والقد مرى في الكمان الحيوة المايمات الديقية القابلة الذوبى ، ولكن

الكلمات المفتاحية: السماد الحيواني، ذوبان، موضة، التربة، الفوسفات الصخري.

Received:19/2/2020, Accepted:3/5/2020

INTRODUCTION

P is an essential and macronutrients just after nitrogen for plant growth and development. Plants absorb P from soil solution as orthophosphate as $HPO4_2^$ and $H_2PO_4^-$. The solubility of orthophosphate is controlled by the pH of soil and by the presence of Ca^{+2} , Mg^{+2} , Fe^{+3} , and Al^{+3} , orthophosphate are extremely reactive through precipitation with cations such as Ca^{2+} , Mg^{2+} in alkaline soils like calcareous soils dominated in Kurdistan which cultivated by wheat crop. And have the same problem in acidic soils through precipitation with cations such as Fe^{3+} and Al^{3+} , or adsorbed to Fe-oxides and Al-oxides, Al-silicates. In calcareous soils were Ca-carbonates are dominant depending on the particular properties of a soil like high soil pH and clay content, in these state, P is highly insoluble and unavailable to plants (26). Most agricultural soils are deficient in P content, rendering P one of the most important nutrients limiting agricultural production especially wheat crop. Soil microbial population is the key component of the soil that governs the almost all biochemical reaction in the soil including nutrient cycling, biocontrol agent, promoting plants growth and seedling (15, 35, 36). The productions of organic acids are the principle mechanism for mineral phosphate solubilization. Also alkaline and acid phosphatases enzyme play major role in the mineralization of organic phosphorus in soil (29). The most accepted mechanism of mineral phosphate solubilization is the action of organic acids produced by soil microorganism almost by fungi. Synthesis of organic acids leads to the acidification of the microbial cell and their surroundings (1). It is well known that phosphorus in the soil is unavailable for plants, but the use of plant associated organisms may aid in mineral P solubilization for easy uptake by the plants. Fungi can solubilize P by production of organic acids and more efficiently than bacteria. Fungi also can promote plant growth by siderophore production. Arbuscular mycorrhizal fungi (AMF) are capable of Iron (Fe) uptake from associated host plants (16). Penicillium fungus is the key groups of soil microorganisms contributed in P cycling. (12, 35). The global attitude now is focused on the use of bio fertilizer as phosphate solubilizing microorganisms as it was ecofriendly and cheap comparing with chemical phosphate fertilizers as super phosphate which deteriorate ecosystem. Releasing huge amounts of phosphate on water bodies and cause

Umar

artificial eutrophication, contain trace amounts of heavy metal as Cd, and As, beside their effects on human being health, finally its high costs for farmers (5,23, 31, 35). Phosphate is highly insoluble and unavailable to plants. As the results, the amount available to plant is usually in a small proportion. It is generally accepted that the major mechanism of mineral phosphate solubilization is the action of organic acids synthesized by soil microorganism (11). The recovery of total P fertilizer applied is very low by wheat and make about 15-20% as it fixed by soil rendering it insoluble/ The only 0.1% soluble and available for plant uptake from the total P (2). Because calcareous soils that contain huge amount of CaCO₃ and distributed all over Kurdistan Region especially Duhok governorate and rendered phosphorous insoluble and wheat crops is cultivated wildly in a condition of rain feeding. So the aim of this research will focus on the effects of adding bio fertilizer of phosphate solubilizing microorganisms, rock phosphate and manure in phosphorous solubilization and availability over growth period of wheat.

MATERIALS ANDMETHODS

Isolation and growth conditions of Psolubilizing microorganisms:

phosphate solubilizing microorganisms strains were isolated from soil samples of Sumail district, Duhok province, Iraqi Kurdistan region. Soil samples (2 kg) were collected from the areas where wheat plants are cultivated by digging the ground at 0-15 cm depth, and stored at 4 °C in refrigerator. Each sample was added to 9 ml Dist. water with 10-fold dilution series. 0.1 ml dilution was purred on Pikovskaya agar $(0.5 \text{ g} (\text{NH}_4)_2\text{SO}_4, 0.5)$ g MgSO₄.7H₂O, 0.3 g NaCl, 0.3 g KCl, 0.03 g FeSO₄.7H₂O, 0.02 g MnSO₄.H₂O, 10.0 g Ca₃(PO₄)₂, 10.0 g Glucose and 15.0 g Agar) and plate count agar (5.0 g Tryptone, 2.5 g Yeast extract, 1.0 g Glucose and 15.0 g agar) by spread plate technique and incubated at 37 °C for 3-5 days. Various colonies on the 10-4, 10-5 and 10-6 dilution plates which showed clear zone indicating the ability for solubilizing tricalcium phosphate were selected and grown on Pikovskaya agar. The selected fungal strains were then re-streaked on the same medium (8, 32).

Fig. 1. The presence of clear zone around black colonies on right of plate indicates the ability of isolated Aspergillus sp. fungus to solubilize rock phosphate

Aspergillus sp is able to solubilize all sorts of unavailable phosphate as rock phosphate, aluminum phosphate and tricalcium phosphate (Kang, et al,. 2002) .Wheat crop were planted in pots containing 2 kg of calcareous soil and treated with manure 2% only, rock phosphate 2% only, manure with phosphate solubilizing fungi as liquid pikovskaya medium about 225 ml, Rock Phosphate with phosphate solubilizing fungi and some pots were leaved without treatments as control (6, 17)..

Chemical analysis

The sodium bicarbonate (NaHCO₃) procedure of is generally accepted as a suitable index of P "availability" for alkaline soils; where the solubility of calcium phosphate is increased because of the precipitation of Ca as CaCO₃.For soluble P, the distilled water used instead of sodium bicarbonate and measured by ascorbic acid method (3). Total nitrogen in soil, plants shoot and root are determined using conc.H₂SO₄ as digestion material according to Kelhdjahel method. Soil pH and electric conductivity by pH meter and all parameters were analyzed after 1, 3 and 5 month

release and solubility of available P forms both

from planting.

Phosphorus solubilizing activity

Screening for primary phosphate solubilizing activity of the isolates was carried out by allowing the fungi to grow in selective media, i.e., Pikovskaya's agar for media for 7 to 10 days at 25°C. The appearance of a transparent halo zone around the fungal colony indicated the phosphate solubilizing activity of the fungus. And the solubilizing index calculated according to this equation. Solubilizing index = Colony diameter + clearing zone / Colony diameter

Statistical analysis

The data has been analyzed by repeated measures ANOVA with general linear model (GLM) procedure to determine the significant effect ($P \le 0.05$) of treatments on studied parameters over time. Data were analyzed by a series of analyses of variance. Subsequently, Tukey's HSD (Honestly Significant Difference) test was used to identify significant differences between treatment means and changes in tested parameters over time. All statistical analyses were carried out using the Minitab software package 17.

RESULTS AND DISCUSSION

Figure 2 and Table 1 indicate that the Manure+ PSM has the most excellence effects on the growth ratio of wheat plant then Rock P+ PSM, that mean the PSM has significant role in excreting induced exudates to promote plant growth. From the tables 1,2,3 and figure 1 it also obvious that the PSM has significant role in increasing both soluble and available phosphorous from rock phosphate and manure, also promote vegetative dense and plant flourishing in most cases. Solubilizing index ranged between 1.4 and 1.6 for isolated fungi (Kang et al. K.D. 2002).

solubilizing activity of the PSM comes from

Fig. 2. Wheat treated with Manure+ PSM in right shows more vegetative and growth ratio than treated with Rock P+ PSM in the middle comparing with control in the left Table1 Wheat growth Batio in various treatments

Table1. Wheat growth Nation Warlous treatments				
Control	Manure	Manure+ PSM	Rock P	Rock P+ PSM
40±3	64±4	96±5	54±3	76±4
From table 2, A	NOVA and P - val	lue obviously	extractable and solub	le as well as in decreasing soil
shows that the PS	SM has a tremendous	effects on the	pH that control th	e solubility of P. The P-

439

biochemical synthesis and release of organic acids, to chelate cations like calcium in calcareous soils which bound to phosphate through their hydroxylic and carboxylic groups and render it in soluble forms (Kpomblekou & Tabatabai, 1994). While PSM release low molecular weight organic acids on mineral rock phosphate by certain strains of PSB (Goldstein 1995) (Kim et al. 1997)(Sheikh-Abdullah & et al. 2019).

Table 2. Summary of ANOVA (General Linear Model) for measures of Soluble P, Extractable P and
pH. Effects treatments, Time and their interactions

	treatments		7	Time		Treatments × Time	
	F4,30	P - value	F2,30	P - value	F8,30	P - value	
soluble P	231.85	<0.0001	12.91	<0.0001	17.59	<0.0001	
Extractable P	12840.99	<0.0001	57.23	< 0.0001	51.57	<0.0001	
рН	97.87	<0.0002	30.2	<0.0002	29.28	<0.0002	

Table 3 shows statistical analysis of various treatments on soil phosphorous form and pH as well as plant content of nitrogen and phosphorous both in shoots and roots after five month planting. Result revealed tremendous effects of PSM on rendering phosphorous available in soil and plants absorption. The treatment of Manure + PSM significantly increased the amount of both soluble and extractable phosphorous as well as the total amount of both nitrogen and phosphorous in the plant root, while in shoots the translocation of phosphorous is seem to be harder than nitrogen from roots to shoots. soil pH is also significantly decreased by the presence of phosphate solubilizing microorganisms because P dissolving bacteria are well known to reduce the pH of the surrounding soil by the excretion of organic acids such as acetic, formic,

lactic, propionic, fumaric, glycolic, and succinic acids which easily dissociated and release a considerable amounts of hydrogen ions which acidify the medium (Barea 2000; Barea et al. 2002; Chalot et al. 2002) (Issazadeh L. et al, 2018). The treatment of Rock P + PSM ranked the second on its positives effects on studied parameters. The PSM are superior in making phosphorous more soluble because phosphorous availability is related to the number and activity of soil dwelling microorganisms especially fungi. And microbial biomass and manure contains a huge amounts of P, which in return available to plants, fungi considered a super agents in the dissolution of phosphates from both organic and inorganic sources (Barea 2000; Barea et al. 2002; Chalot et al. 2002).

Table 3. effect of treatments on studied soil and plants parameters. For N in root, N in shoot, P in root					
and P in shoot the analysis were performed on the data obtained at the end of the experiments (Month					
five).					

	Soil Soluble P ppm	Soil Extractable P ppm	pH	N Root %	N shoot %	P root %	P shoot %
Treatments	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD
Control	$0.328 \pm 0.05d$	$\textbf{0.848} \pm \textbf{0.08e}$	7.81 ± 0.26a	0.557 ± 0.03d	1.171 ±0.06c	0.447 ± 0.04b	0.557 ± 0.15a
Manure	$\textbf{0.447} \pm \textbf{0.03b}$	$10.333 \pm 0.41c$	7.33 ± 0.50c	0.840 ± 0.02b	1.792 ± 0.01b	0.654 ± 0.07ab	0.563 ± 0.07a
Manure + PSM	$0.516 \pm 0.04a$	11.533 ± 0.78a	6.92 ± 0.30e	1.171 ± 0.05a	2.161 ± 0.05a	0.796 ± 0.20a	0.657 ± 0.12a
Rock P	$\textbf{0.329} \pm \textbf{0.03d}$	$\textbf{9.456} \pm \textbf{0.21d}$	7.50 ± 0.08b	0.673 ± 0.02c	2.100 ± 0.12a	0.570 ± 0.09ab	0.650 ± 0.12a
Rock P + PSM	$0.419 \pm 0.02c$	$10.556\pm0.32b$	7.14 ± 0.16d	0.677 ± 0.01c	1.790 ± 0.03b	0.572 ± 0.13ab	0.545 ± 0.20a
P-value	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.05	> 0.05

Means that do not share letter in a column are significantly different at probability level ($P \le 0.05$).

Table 4 shows the statistical analysis of soil soluble P, extractable P and pH changes after 1,3,and 5 month after wheat planting in plastic pods in different treatments. Result revealed that soil soluble P reached its peak after one month then declined slightly with time, whereas soil extractable

P take 3 month to reach its highest amounts indicating that the positive effects of PSM in P availability last for 5 months. The positive effects of PSM in soil pH showed decreasing in pH in the whole time of experiment and the peak decline were noticed after 5 month. There are well known inverse relationship between the soil pH and soluble phosphorous concentration documented by many researchers that the PSB strains via production of organic acid decrease soil pH through the acidification of the soil medium and enhancing the solubilization of phosphorous (Illmer and Schinner 1995) and (Hwangbo et al. 2003) (Issazadeh et al. 2018).

	Soil Soluble P ppm	Soil Extractable P ppm	pH
Months	Mean ± SD	Mean ± SD	Mean ± SD
1	$0.441 \pm 0.04a$	8.34 ± 3.96c	$7.38\pm0.5a$
3	$\textbf{0.420} \pm \textbf{0.10a}$	8.79 ± 4.18a	$7.47 \pm 0.37a$
5	$0.391 \pm 0.09b$	$8.50 \pm \mathbf{4.04b}$	$7.18 \pm \mathbf{0.35b}$
		Summary of ANOVA (P –Value)	
	<0.0001	<0.0001	<0.0001

Table 4. Changes in soil soluble P, Extractable P and pH during different time period

Means that do not share letter in a column are significantly different at probability level ($P \le 0.05$).

Table 5 shows the treatments of soil by manure, rock P and PSM and there interaction effects with time on the soil soluble P ppm, extractable P ppm and soil pH. The treatment of Manure+ PSM gives best effects on soil solubilize and extractable after 3 and 5 month, then manure treatment gives the second best effects on releasing soluble and extractable phosphorous also after 3 month. This effect of PSM and manure is higher in the case of extractable phosphorous from low to adequate range in soil according worldwide standards. Soil pH adversely affected by adding PSM and manure and highest decrease in pH were obtained in Manure+ PSM after 1 month treatment, then in manure after 5 month, then in Rock P+ PSM also after 5 months (Omar 1998) (Bayan and Umer 2018) (Fokin et al 2014a).

Table 5. interaction effect of the treatments and time on the Soil soluble P ppm, extractable P ppm and	
nU	

			Months	
		1	3	5
		Mean ± SD	Mean ± SD	Mean ± SD
	Control	$0.39 \pm 0.2ef$	$0.31\pm0.015 gh$	$0.28 \pm 0.02 h$
Soil Soluble P	Manure	$0.42 \pm 0.01 de$	$0.48 \pm 0.015 bc$	$\textbf{0.45} \pm \textbf{0.015cd}$
ppm	Manure+ PSM	$0.47\pm0.01c$	$0.56\pm0.015a$	$0.52 \pm 0.02 ab$
	Rock P	$0.36 \pm 0.01 fg$	$0.32 \pm 0.02 gh$	$0.31 \pm 0.015 h$
	Rock P+ PSM	$0.42 \pm 0.01 de$	0.43 ± 0.03cde	$0.40 \pm 0.005 def$
	Control	$0.75 \pm \mathbf{0.006i}$	$\textbf{0.95} \pm \textbf{0.015i}$	$0.84 \pm 0.012 i$
	Manure	9.9 ± 0.1ef	$10.27\pm0.058d$	$10.83 \pm 0.115c$
Soil Extractable P	Manure+ PSM	$10.7\pm0.2c$	$12.47 \pm 0.058a$	$11.43 \pm 0.058 b$
ppm	Rock P	9.63 ± 0.058fg	9.5 ± 0.2 gh	$9.23 \pm 0.116h$
	Rock P+ PSM	$10.73 \pm 0.058c$	$10.77\pm0.058c$	10.17 ± 0.252 de
	Control	$8.00 \pm 0.10a$	7.95 ± 0.05a	7.49 ± 0.14 bcd
рН	Manure	$7.56 \pm 0.09 bc$	7.75 ± 0.096ab	$6.68 \pm 0.052 gh$
	Manure+ PSM	$6.57 \pm 0.116h$	$7.00 \pm 0.05 f$	7.19 ± 0.177def
	Rock P	7.50 ± 0.1 bcd	7.47 ± 0.115bcde	7.55 ± 0.099bc
	Rock P+ PSM	7.27 ± 0.153cdef	7.16 ± 0.2ef	6.98 ± 0.136fg

Means that do not share letter among five treatments and time are significantly different at probability level ($P \le 0.05$).

Table 6 revealed the effects of each treatment over time on the changes of soil soluble P ppm, extractable P ppm, and soil pH. The time has significant effects even in control treatment and soil soluble P released at its peaks after 1 month from wheat planting reflecting the maximum effects of indigenous soil PSM which need one month to release most soluble P while it need about 2 month to release most extractable P and significantly decreased soil pH over first three months of growing. Manure alone has an excellent influence in rendering P available till five months due to its richness by essential nutrients and release of wide range of organic acids so significantly decreased soil pH continuously till five months so the extractable P reached it high after 5 month (Krey et al. 2013). Manure+ PSM treatment considered the supreme in all aspect's including time and maximum available P lasted for three months and conserved optimum soil pH to the end of growing season due to a harmonized mixture of Manure+ PSM in liberating available forms of P through the whole 5 months. The addition of rock phosphorous alone don't make a distinct differences in both soluble and extractable P over control treatment as the release of these forms is quite difficult than its liberation from organic manure that enhance the flourish of indigenous PSM more than rock P.The addition of PSM to rock P improved the solubility of rock P till 5 month and aids in a significant release of extractable P during the third beginning month of wheat growing (Kimet al. 1997)-- (Saber et al 2009) (Fokin et al 2014b) (Fokin et al 2014c). Soil pH also decreased about one unit comparing to control during the whole period of growing season (Idrees & Ismail 2019).

Table 6. changes	s in Soil Soluble P	ppm, extractable P ppr	n, and pH under each trea	tments over time
Control		Soluble P ppm	Extractable P ppm	pH
	months	Mean ± SD	Mean ± SD	Mean ± SD
	1	$0.39 \pm 0.02a$	$0.75\pm0.006c$	8.00 ± 0.1a
	3	$0.31 \pm 0.015 b$	0.95 ± 0.015a	$7.95 \pm 0.05a$
	5	$0.28 \pm 0.02b$	0.84 ± 0.0116b	$7.49 \pm 0.14b$
	P - value	0.001	< 0.0001	0.002
Manure	1	$0.42\pm0.012b$	9.9 ± 0.1 c	$7.56 \pm 0.09a$
	3	$0.48\pm0.015a$	$10.27 \pm 0.058b$	7.75 ± 0.096a
	5	0.45 ± 0.015 ab	$10.83 \pm 0.115a$	$6.68 \pm 0.052 b$
	P - value	0.006	< 0.0001	< 0.0001
		Mean ± SD	Mean ± SD	Mean ± SD
	1	$0.47\pm0.01b$	$10.7\pm0.2c$	$6.57 \pm 0.116b$
Manure+ PSM	3	$0.56 \pm 0.015a$	$12.47 \pm 0.058a$	$7.00 \pm \mathbf{0.05a}$
	5	$0.52\pm0.02a$	$11.43 \pm 0.058c$	7.19 ± 0.178a
	P - value	0.001	<0.0001	0.002
		Mean ± SD	Mean ± SD	Mean ± SD
	1	$0.36 \pm 0.01a$	9.63 ± 0.06a	$7.50 \pm 0.1a$
Rock P	3	$0.32\pm0.02b$	9.5 ± 0.2ab	$7.47 \pm 0.01a$
	5	$0.31 \pm 0.012 b$	$9.23 \pm 0.12b$	7.55 ± 0.1a
	P - value	0.01	0.031	0.52
Rock P+ PSM		Mean ± SD	Mean ± SD	Mean ± SD
	1	$0.42\pm0.01a$	$10.73 \pm 0.058a$	$7.27 \pm 0.153a$
	3	$0.43 \pm 0.03a$	$10.77 \pm 0.058a$	$7.16\pm0.02a$
	5	$0.40\pm0.01a$	$10.17\pm0.252b$	6.99 ± 0.136a
	P - value	0.15	0.005	0.067

Means that do not share letter in each column and for each separated treatments are significantly different at probability level ($P \le 0.05$).

CONCLUSIONS

PSM with manure and Rock P have the most excellence effects on the growth ratio of wheat plant by excreting induced exudates to promote plant growth and ensure the growth of wheat seeds. PSM with manure and Rock P have tremendous effects in the release and solubility of available P forms both extractable and soluble as well as in decreasing soil pH that control the solubility of P. PSM with manure and Rock P have significantly increased the amount of both soluble and extractable phosphorous as well as the total amount of both nitrogen and phosphorous in the plant root, while in shoots the translocation of phosphorous is seem to be harder than nitrogen from roots to shoots. The addition of PSM and manure combined or alone to the soil ensured a decrease in soil pH for one unit that indicates the liberation of available phosphorous in calcareous soils. The use of PSM and manure combined or alone ensured an adequate range of available phosphorous in calcareous soils at least for 3 months which has well known problems with phosphorous availability. So it recommended adding PSM and manure combined or alone to the soil at least one time in the annual season of wheat growing.

REFERENCES

1. Al-Hadethi and et al., a.-h. 2019. Some cations movement in calcareous soil columns under effect of saline water mixed with humic acid. Iraqi Journal of Agricultural Sciences, 50(5). <u>https:// doi.org/10.36103/ijas.v50i5.796</u>

<u>2</u>. Baqer B. 2019. Response of some wheat growth traits for foliar spraying with humic and glutamic acid. Iraqi Journal of Agricultural Sciences, 50(6). https://doi.org/10.36103/ijas.v50i6.833

3. Barea J. M. 2000. Rhizosphere and mycorrhiza of field crops. In: Touant A (ed) Biological resource management: connecting science and policy. OECD, INRA Editions and Springer, Berlin Heidelberg, New York, pp 110–125

4. Barea J. M, M, Toro, M. O, Orozco, E, Campos and R. Azcon 2002. The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate solubilizing rhizobacteria, mycorrhizal fungi and rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutri Cycl Agroecosyst 65:35–42 5. Bayan A. Abdulhalim and Mustafa I. Umer 2018. Effects of chemical and physical properties of pond bottom sediments on fish rearing in Iraqi Kurdistan Region. Kufa Journal for Agriculture Science. Kufa, Iraq 10:3:99–78

6. Boyd C. E. and C. S. Tucker. 1992. Water Quality and Pond Soil Analyses for Aquaculture. Alabama Agricultural Experiment Station, Auburn University, Auburn, AL, USA, pp: 183

7. Chalot M, A. Javelle R, Blaudez D, Lambilliote, R, Cooke, H. Sentenac D.,Wipf and S. Botton 2002. An uptake on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–175

8. Coyne, M. 1999 Lab Manual to Accompany Soil Microbiology: An Exploratory Approach. Franue Delmer Publishers

9. Fernández, L., B. Agaras, P., Zalba, L. G., Wall, L.G. and C. Valverde, . 2012. Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under notillmanagement. Biol. Fert. Soils. 48, 763-773 10. Fokin A. D., S. P. Torshin, M. Bebneva Yu.. and R. A. Gadzhiagaeva, I. Yu.I., Zolotareva and M. J. Umer. 2014. The destruction of soil aggregates and its effect on the absorption of radionuclides by plants.// in Russian language Известия TCXA, №1

11. Fokin A. D., S. P. Torshin, Yu. M. Bebneva, R. A. Gadzhiagaeva. I., Yu., Zolotareva., and M. J. Umer . 2014. Input of 137Cs and 90Sr into plants from the surface of soil aggregates and the entrapped space/ in Russian language Почвоведение, №12, c.1416-1425

12. Fokin A. D., S. P., Torshin, M., Bebneva Yu. R. Gadzhiagaeva I. Zolotareva Yu., and M. I. Umer 2014 a. Input of 137Cs and 90Sr into plants from the surface of soil aggregates and the intraped space//Eurasian Soil Science, 47, (12).1198-1207

13. Forum for Nuclear Cooperation in Asia (FNCA). 2006 FNCA Biofertilizer Project Group. Biofertilizer Manual

14. Giath M.Q, Saed I. A. Al-Sulaivany, Mustafa I. Umer, 2010.Effect of the temperature and soil moisture on the biodegradation of sheep manure in calcareous soils.1- Measurement of carbon dioxide evolution. Mesopotamian Journal of Agriculture. 38 (3): 10-15

15. Goldstein, A.H., 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol. Agric. Hort. 12, 185– 193

16. Haselwandter, K. 2008. Structure and function of siderophores produced by mycorrhizal fungi.Mineral.Mag.72: 61-64

17. Hu, X., J. Chen, and J. Guo, 2006. Two phosphate- and potassium-solubilizing bacteria isolated from tianmu mountain, Zhejiang, China. World Journal of Microbiology and Biotechnology, 22, 983 – 990

18. Hwangbo, H., R. D., Park, Y. W., Kim, Y. S., Rim, K. H., Park, T. H., Kim, J. S., Suh, and K. Y., Kim, 2003. 2-Ketogluconic production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47, 87–92

19. Idrees Dawud, K., and M. Ismail Umer, 2019. Bioremediation of heavily contaminated soil in Kwashe industrial area using Bio-composting technique with sheep and chicken manure in Kurdistan region, Iraq. Journal of Duhok University, 22(1), 322-331. https://doi.org/10.26682/avuod.2019.22.1.30

20. Illmer, P., F., Schinner, 1995. Solubilization of

inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem. 27, 257–263

21. Issazadeh L., Umar M. I., AL-Sulaivany S.I.A., Hassanpour J. 2018. Geostatistical analysis of soil permeability coefficient in different soil textures. The Serbian Journal of Agricultural Sciences Contemporary Agriculture 67, (2) : 119 - 124,

22. Kang, C. S., G. C, Ha, G. L. Tae, and K. D. Maheshwari, 2002. Solubilization of Insoluble Inorganic Phosphates by a Soil Inhabiting Fungus Fomitopsis sp. PS 102, Current Science, 82 (4), 439 -442

23. Kim, K. Y., D., Jordan, and H. B., Krishnan, 1997. Rahnella aqualitis, a bacterim isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153, 273–277

24. Kpomblekou, K., and M. A., Tabatabai, 1994. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 158, 442–453

25. Krey, T., N., Vassilev, C., Baum, Eichler- and B. Löbermann, 2013. Effects of long term phosphorus application and plant growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur. J. Soil Biol. 55, 1124-1130

26. Muhawish N. M. and M. Al-kafaje, 2017. Soil organic carbon and phosphorus status after combined application of phosphate rock and organic materials in a gypsiferouss*. Iraqi Journal of Agricultural Sciences, 48(special). <u>https://doi.org/10.36103/ijas.v48ispecial.246</u>

27. Mustafa I. Umer, A. Payman Abduljabar, and A. M. Newar Hamid 2018. Assessment of ground water pollution by heavy metals and anions in Kwashe industrial area, Duhok City, Kurdistan Region. Iraq. IOP Conf. Series: Materials Science and Engineering 454 (2018) 012004 doi:10.1088/1757-899X/454/1/012004 28. Mustafa I. Umer and M. Shayma Rajab 2012. Correlation between aggregate stability and microbiological activity in two Russian soil types. Eurasian journal of soil science N. 1 pp: 45-50

29. Nasser, K. M. 2019. Effect of ionic strength from different salt resources on boron adsorption in calcareous soil. Iraqi Journal of Agricultural Sciences, 50(6).

https://doi.org/10.36103/ijas.v50i6.839

<u>30</u>. Nautiyal, C. S., S., Bhadauria, P., Kumar, H., Lal, and M. D., Verma, 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol.Lett. 182, 291–296 31. Omar, A.S. 1998 The role of rock-phosphatesolubilizing fungi and vesicular-arbuscularmycorrhiza (VAM) in growth of wheat plants

fertilized with rock phosphate, World Journal of Microbiology and Biotechnology, 14, 211 - 218

32. Pikovskaya R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologia 17:362–370

33. Saber W. I. A., K. M., Ghanem, M. S. El-Hersh, 2009: Rock phosphate solubilization by two isolates of *Aspergillus niger* and *Penicillium sp.* and their promotion to mung bean plants. Research Journal of Microbiology, 4: 235–250

34. Sheikh-Abdullah & et al., a. 2019. Estimation of the rmodynamic isotherms for Mn adsorption in some calcareous soils at Sulaimani Governorate. Iraqi Journal of Agricultural Sciences, 50(4).

https://doi.org/10.36103/ijas.v50i4.749

<u>35</u>. Umer M. I., and A. A. Vankova 2011. Microbiological activity on the surface and inside soil aggregates. In Russian language Isvestya journal 6. : 78-83

36. Vessey J.K. 2004. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571–586.