DETECTION OF LISTERIA MONOCYTOGENES IN RAW MILK AND ABORTED COW CASES AT SALAHUDEEN PROVINCE

B. S. Noomi*

Sh. A. Anwar**

S. M. Salih***

*Dept. of Microbiology, Coll. Veterinary Medicine, Tikrit University, Iraq.

**Dept. of Basic Science, Coll. Dentistry, Tikrit University, Iraq.

***Dept. Clinical Lab. Sciences Coll. Pharmacy, University of Kirkuk, Iraq.

E-mail: sheelananwar7@gmail.com

ABSTRACT

Listeria monocytogenes is a pathogen that causes infectious diseases in animals. It is one of the causal agents causing abortion in infected cows. This study was conducted to detect *listeria monocytogenes* in aborted cows. Also to estimate the role of the milk in the distribution of the pathogen by detecting the bacteria in milk of aborted cows as well as in raw milk from the market of Salahudeen province. The study includes 46 aborted cows from which 46 milk samples were taken to detect the causative agents. Also 38 vaginal swabs were taken from the same aborted cows and 8 samples from fetuses. 30 raw milk samples were also taken from market at Salahudeen province. The results showed that *Listeria monocytogenes* were detected in 5 (13.1%) of vaginal swabs, 2 (25%) of aborted fetuses, 13 (28.26%) in milks from aborted cows, and 9 (30%) of raw milks. The isolated pathogens were screened for the presence of 3 virulence factors; InIJ, InIA, and HIY. The results showed that theses virulence genes were found in the majority of the isolates and the isolation rate ranged between 75%-100%. The study concluded that milk is one of the main sources for the pathogen spreads to other animals.

Keyword: Listeria monocytogenes bacteria, abortion in infected cows. animals diseases.

مجلة المعلوم الزراعية المعراقية -2021 :52: 2021 عنومي وأخرون

الكشف عن LISTERIA MONOCYTOGENES في الحليب الخام وحالات الأبقار المجهضة في محافظة صلاح الدين

صباح محمد صالج**

شيلان اكبر انور **

بشار صادق نوم*ي**

قرع الاحياء المجهرية, كلية الطب البيطري, جامعة تكريت, العراق. "فرع العلوم الاساسية, كلية طب الاسنان, جامعة تكريت, العراق "فرع علوم المختبرات السريرية, كلية الصيدلة, جامعة كركوك, العراق

المستخلص

يعد بكتريا Listeria monocytogenes أجريت هذه الدراسة للكشف عن Listeria monocytogenes في الأبقار المسببة للإجهاض في الأبقار المصابة به. أجريت هذه الدراسة للكشف عن Listeria monocytogenes في الأبقار المجهضة. كما تم تقدير دور الحليب في انتشار العامل الممرض من خلال الكشف عن البكتيريا الموجودة في لبن الأبقار المجهضة وكذلك في الحليب الخام من سوق محافظة صلاح الدين. تضمنت الدراسة 46 بقرة مجهضة وتم أخذ 46 عينة لبن منها للكشف عن العوامل المسببة للإجهاض. كما تم أخذ 38 مسحة مهبلية من نفس الأبقار المجهضة و 8 عينات من الأجنة. تم أخذ 30 عينة لبن خام من سوق محافظة صلاح الدين. أظهرت النتائج وجود بكتريا (28.26) من حليب الأبقار في 5 (25٪) من الأجنة المجهضة ، وفي 13 (28.26٪) من حليب الأبقار المجهضة، و 9 (30٪) من الحليب الخام. بعد ذلك تم فحص مسببات الأمراض المعزولة للكشف عن وجود ثلاث من عوامل طراوة هي غالبية العزلاتن وتراوحت معدل العزلة بين ضراوة هي المال الممرضة إلى الحيوانات الأخرى.

الكلمات المفتاحية: بكتيريا Listeria monocytogenes ، الإجهاض في الأبقار المصابة. أمراض الحيوانات.

Received:19/2/2020, Accepted:3/5/2020

INTRUDUCTION

Listeria monocytogenes is an important foodborne pathogen in human and veterinary health (Blanchard et al., 2020). It is intracellular gram positive rode Coccobacilli bacteria. It is non-spore forming, non-capsulated, motile as tumbling and rotatory motility by peritrichus flagella at room temperature. Grow with smooth and rough colony and narrow zone of blood hemolysis (Collee et al., 1996). Listeria monocytogenes distributed in all over the world, its able to infect more than 40 animal types and more than 20 bird types, and also many types of arthropods conceder mechanical vehicle (Cocolin et al., 2002, Dhama et al., 2015, Owusu et al., 2018). It has many virulence factors like Listeriolysin O, Phospholipase-C, protein Act Α Internalines, (Bierne and Cossart, 2002, Matle et al., 2020). The main method of infection is oral way and then the bacteria reach blood stream by enterocytes and peyer's patches then engulfed by macrophage and reach to mesentery lymph node and reticulo endothelial system (Cebra et al.,2001. Main disease in animal are Encephalitis (circuling disease) which occur due to transmission of bacteria through trigeminal nerve and characterized by fever, Unilateral fascial paralysis, dysphagia, circling. Listeria is of great veterinary importance in livestock due to its negative impact on animal health leading to premature death or reproductive failure responsible for economic losses. (Radostitis *et al.*,2007, Blanchard *et al.*, 2020).

MATERIALS AND METHODS

Samples: In the current study, 46 samples were collected from aborted cow from December 2018 – June 2019 in Salahudeen province. Also 30 raw milk samples were taken from the market. These samples are as follows:

1- Aborted cow samples

- a- Vaginal swabs: 38 vaginal swab were collected from aborted cow in period not more than 7days after abortion
- b- Fetus samples: 8 cow fetus sample were taken, an

2- Milk sample

- a- Milk from aborted cow: 46 milk sample were collected from aborted cow.
- b- Raw milk: 30 cow milk samples were collected from markets at Salahudeen province.

1ml of milk sample were taken and mixed with 0.1 ml of sodium citrate. All sample kept at 4°C for three days then cultured on trypton soya broth at 30°C for 48hours. (VanNetten *et al.*,1989).

DNA extraction: DNA was extracted from broth media by using extraction kit (ABIOpureTM Total DNA- ABIOpure, USA) according to instructions of the manufacturer's. =In table (1) showed PCR reaction mixture and in table (2) showed thermocyclar program

Table 1. Compounds used in the preparation of PCR reaction mixture

Compounds	-	Volume	Out
			product size
Master Mix- Promega- US	SA	10 µl	
Listeria monocytogenes	5`-GCCGCCAAGAAAAGGTTACA-3`	1 μl	208bp
	5`-GCTGAGTGTTAATGAATCACG-3`	1 μl	_
Nuclease Free Water		3 µl	
DNA template		10 μl	
Total		25 μl	

Table 2. Timer program of the Thermocycler used for detection *Listeria monocytogenes*

Stage	Temperature	Time	Cycles
	(c °)	(mints)	(nombers)
First Denaturation step	95	5 mints	1
Denaturation step	95	30 second	
Primer-annealing step	54	1 min	30
DNA extension step	72	1 mint	
Final DNA extension step	72	7 mints	1
End Temperature	10	10 mints	

Primers used for detection of virulence factors: in the current study three types of primer used as in table (3).

Table 3. Types, sequence, and product size of primers used for detection of virulence factors

Gene	Target	Seg	puence (5–3)	Size	Reference
InlJ	Internalin J	F	TGT AAC CCC CGC TTA CAC AGT T	238	Liu et al.
		R	AGC GGC TTG GCA GTC TAA TA		(2007)
InlA	Internalin A	\mathbf{F}	ACG AGT AAC GGG ACA AAT GC	800bp	Liu et al.
		R	CCC GAC AGT GGT GCT AGA TT		(2007)
HIY	Listeriolysin O	\mathbf{F}	GCCTGCAAGTCCTAAGACGCCAATC	706bp	Hudson et
	•	R	CTTGCAACTGCTCTTTAGTAACAGC	_	al., 2001

Tables (4,5,6) showed thermocyclar program used

Table 4. Timer program of the Thermocycler used for detection of InlA gene of Listeria

monocytogenes

Stage	Temperature	Time	Cycles
	(c °)	(mints)	(nombers)
First Denaturation step	94	4 mints	1
Denaturation step	94	30 second	
Primer-annealing step	52	1MINT	30
DNA extension step	72	2.5 mint	
Final DNA extension step	72	7 mints	1
End Temperature	10	10 mints	

Table 5. Timer program of the Thermocycler used for detection of InlJ gene $\overline{\text{of }}$ Listeria monocytogenes

Stage	Temperature	Time	Cycles
	(c °)	(mints)	(nombers)
First Denaturation step	94	4 mints	1
Denaturation step	94	30 second	
Primer-annealing step	58	1mint	30
DNA extension step	72	2.5 mint	
Final DNA extension step	72	7 mints	1
End Temperature	10	10 mints	

Table 6.Timer program of the Thermocycler used for detection of HLY gene of *Listeria monocytogenes*

monocytogenes				
Stage	Temperature	Time	Cycles	
	(\mathbf{c}°)	(mints)	(nombers)	
First Denaturation step	94	5 mints	1	
Denaturation step	94	30 second		
Primer-annealing step	50	45second	30	
DNA extension step	72	1 mint		
Final DNA extension step	72	7 mints	1	
End Temperature	10	10 mints		

RESULTS AND DISCUSSIONS

The result of this study showed that milk was the best sample for the isolation of listeria in aborted cows, since the isolation rate was 28.26% from milk samples followed by 25 %

from fetuses and 13.1% from vaginal swabs. On the other hand, listeria was isolated from 30% of raw milk samples as shown in table (7). Figure (1) shows the positive result of PCR test.

Table7. Showed the PCR test results for detection of *Listeria monocytogenes* from milk and aborted samples

Type of sample	No. of samples	No. of +ve sample	Percentage of +ve
			samples
Vaginal swabs	38	5	13.1
Aborted fetus	8	2	25
Milk from aborted cow	46	13	28.26
Raw milk	30	9	30

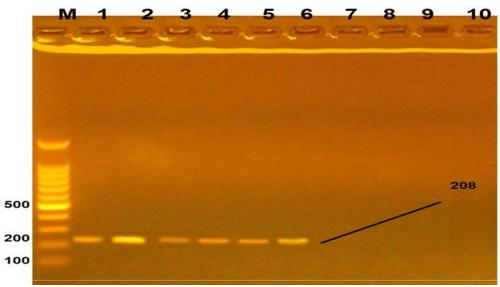


Figure 1. Agarose gel electrophoresis of PCR products. M: 100 bp DNA ladder, lines (1-6) positive result at 208 bp for *Listeria monocytogenes*

The results of study showed that listeria detected in rate of 15.2% from aborted case. The difference rate of listerial abortion depend on type of animal, strain of animal, age of animal, geographic location (Schlech, 1996). Listeria monocytogenes is ubiquitous in cattle production environments, including soil, feed, and occasionally water sources, and is a common enteric resident of cattle and other mammals. There are four genetically distinct lineages of L. monocytogenes (I-IV), with most lineage III and IV isolates obtained from ruminants. (Whitman et al., 2020) The current study showed high rate of listeria detected in milk from aborted cows, that mean listeria either caused abortion and bacteremia occur, then bacteria reach to udder and release with milk or less commonly the presence of listeria in milk refer to mastitis or contamination during handing or mechanical milking, or may be the milk contaminated from infected milker (Radostitis et al., 2007; Dongyou Liu, 2008,

Ricchi et al., 2019). The result show that listeria detection from raw milk in rate of 16.6%, this percentage more than rate that recorded by (AL-Shammary, 2001) which is 12.5% in Baghdad that's due to difference in location of study, number of sample and seasonal variation of study. Winter is best season for listeria dissension. Type of diagnosis test predominating PCR is better than culture technique due to their ability to detect low number of bacteria and dead bacteria (AL-Shammary, 2001). Milk with high rate of water conceder ideal environmental for bacterial growing, also cow milk contain phospholipid which is suitable for listeria (Robinson, 2000) In figure (2,3,4) show positive result of PCR test for detection of virulence factors and in the table (8) showed appearance of virulence factors of Listeria monocytogenes isolated from different samples.

Table 8. Appearance of virulence factors of *Listeria monocytogenes*

Type of sample	Number of positive	Virulence factors (number and ratio of positive samples)		
	sample	InlJ	InlA	HIY
Vaginal swabs	5	5(100%)	5 (100%)	5 (100%)
Aborted fetus	2	2(100%)	2 (100%)	2 (100%)
Total of abortion	7	7 (100%)	7 (100%)	7 (100%)
case				
Milk from aborted	13	13 (100%)	13 (100%)	11 (84.6%)
cow				
Raw milk	9	8 (88.8)	8 (88.8)	6 (75%)

This study showed that appearance of InIJ and InIA in rate 100%. The result of the current study is approach with result of (Owusu-Kwarteng *et al.*,2018). *L. monocytogenes*

expresses about 50 molecules, including the virulence genes listeriolysin O and two major internalins, InlA and InlB, to promote its cell infection cycle. InlA and InlB, known to

promote bacterial uptake by host cells, and the secreted pore-forming toxin listeriolysin O (LLO), which disrupts the phagosome to allow bacterial proliferation in the cytosol InlA facilitates both bacterial attachment and internalization in cells that express its receptor

(Phelps *et al.*, 2018). The similarity of virulence appearance in aborted sample and milk of aborted cow and raw milk may be refer to similarity of source and milk is main source to human infection (Camejo et al. 2011).

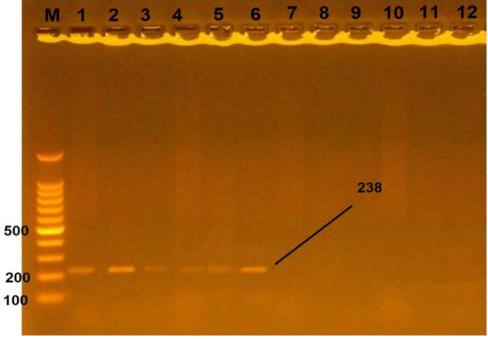


Figure 2. Agarose gel electrophoresis of PCR products. M: 100 bp DNA ladder, lines (1-6) positive result at 238 bp for internalin J (InlJ) gene of Listeria monocytogenes

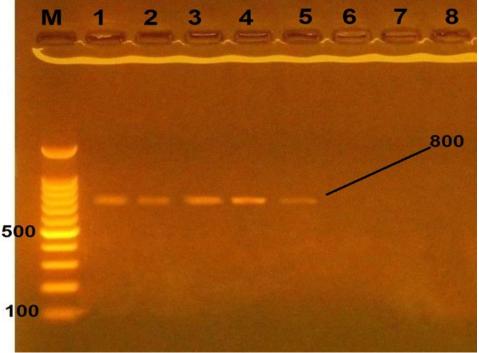


Figure 3. Agarose gel electrophoresis of PCR products. M: 100 bp DNA ladder, lines (1-5) positive result at 800 bp for inlAInternalin A (InlA) gene of Listeria monocytogenes

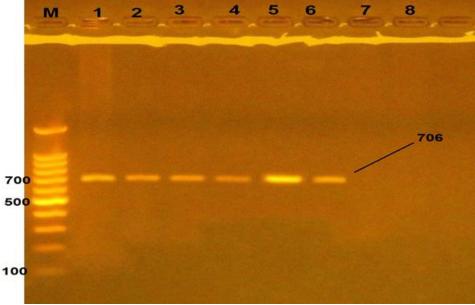


Figure 4. Agarose gel electrophoresis of PCR products. M: 100 bp DNA ladder, lines (1-6) positive result at 800 bp for Listerolysin O (HIY) gene of Listeria monocytogenes

REFERENCES

1.AL-Shammary , A., H., A., 2001. The Incidence of Listeria monocytogenes in Milk and Some Dairy Products in Baghdad. PhD Thesis , college of vet. Medicine. Baghdad University.

2.Bangieva, D. R. and V. N. Rusev, 2017. Prevalence of Listeria monocytogenes in raw cow milk – a review. Bulg. J. Vet. Med., 20, Suppl. 1, 430–436

3.Bierne , H.N. and P.G. Cossart, 2002: Internaline B a surface protein of Listeria monocytogenes that behaves as an invasion and growth factor . J.Cell .Science .115 :3357-3367

4.Blanchard, A. M., R., Billenness, J., Warren, A., Glanvill, W., Roden, E., Drinkall, and S. Tötemeyer, 2020. Characterisation of Listeria monocytogenes isolates from cattle using a bovine caruncular epithelial cell model. Heliyon, 6(7), e04476

5.Blanchard, A. M., R., Billenness, J., Warren, A., Glanvill, W., Roden, E., Drinkall, and S. Tötemeyer, 2020. Characterisation of Listeria monocytogenes isolates from cattle using a bovine caruncular epithelial cell model. Heliyon, 6(7), e04476

6.Camejo A, F, Carvalho O, Reis E, Leitao S, Sousa and D, Cabanes 2011 The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2(5):379-394

7.Cebra,J.J.; M.; Manahr, D.O.Baumann, and N.A. Bos, 2001 Gut colonization of mice with

actA-negative mutant of listeria monocytogenesis can stimulate a humeral and mucosal immune response.Inf.Imm.69:3620-3629

8. Cláudia E. Rocha, 1 Juliana P. S. Mol, 2 Luize N. N. Garcia, 2 Luciana F. Costa, 1 Renato L. Santos,2 and Tatiane Paixão1. A. 2017*Comparative experimental infection of Listeria monocytogenes and Listeria ivanovii in bovine trophoblasts. PLoS One. 12(5): 1-13 9. Cocolin, L.; Rantsiou, K. Lacumin, L.; Contoni, C. and Comi, G. 2002: Direct identification in Listeria sp and listeria food samples of monocytogenes by molecular methods. Appl. Microbiol . 68:6274-6282

10.Collee, J.G.; A.G.; Franser, B.P. Marmion, and A. Sinmons 1996. "Mackie and Maccartney Practical Medical Microbiology". 4th. ed. Churchill, Livingstone, London. pp. 309-313.

11.Dhama, K., K., Karthik, R., Tiwari, M. Z., Shabbir, S., Barbuddhe, S. V. S., Malik, and R. K. Singh, 2015. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Veterinary Quarterly, 35(4), 211-235

12.Dongyou Liu 2008. Handbook of Listeria monocytogenes. 1st ed., CRC Press, USA.

13.Karen Hunt1,3, Niall Drummond2, Mary Murphy2, Francis Butler3, Jim Buckley2and Kieran Jordan. A case of bovine raw milk contamination withListeria monocytogenes.

Huntet al. Irish Veterinary Journal 2012, 65(1):13

14.Matle, I., K. R., Mbatha, and E. Madoroba, 2020. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort Journal of Veterinary Research, 87(1), 1-20

15.Owusu-Kwarteng, J., A., Wuni, F., Akabanda, and L. Jespersen, 2018. Prevalence and characteristics of Listeria monocytogenes isolates in raw milk, heated milk and nunu, a spontaneously fermented milk beverage, in Ghana. Beverages, 4(2), 40

16.Phelps, C. C., S., Vadia, E., Arnett, Y., Tan, X., Zhang, S., Pathak-Sharma, and S. Seveau, 2018. Relative roles of listeriolysin O, InlA, and InlB in Listeria monocytogenes uptake by host cells. Infection and immunity, 86(10), e00555-18

17.Ricchi, M., E., Scaltriti, G., Cammi, C., Garbarino, N., Arrigoni, M., Morganti, and S. Pongolini, 2019. Persistent contamination by

Listeria monocytogenes of bovine raw milk investigated by whole-genome sequencing. Journal of dairy science, 102(7), 6032-6036. 18. Schoder, D., D., Melzner, Schmalwieser, A., Zangana, P., Winter, and M. Wagner, 2011. Important vectors for Listeria monocytogenes transmission at farm dairies manufacturing fresh sheep and goat cheese milk. Journal from of Food Protection, 74(6), 919-924 19. Walland J. 1, J. J. Lauper2, R. Frey3, R. Imhof4, T. Stephan5, and A. Seuberlich1, 2015. Oevermann1 Listeria monocytogenes infection in ruminants: Is there a link to the environment, food and human health? A review. Band 157, Heft 6, Juni, 319-328 20. Whitman, K. J., J. L., Bono, M. L., Clawson, J. D., Loy, J. M., Bosilevac, T. M., Arthur, and J. D. Ondrak, 2020. Genomicbased identification of environmental and clinical Listeria monocytogenes strains associated with an abortion outbreak in beef

heifers. BMC veterinary research, 16(1), 1-13