EFFECT OF DIETARY SUPPLEMENTATION OF MIACLOST ON PERFORMANCE AND GUT MORPHOLOGY IN BROILER CHICKENS CHALLENGED WITH ESCHERICHIA COLI

S. A. M'SADEQ

Lecturer

Animal Production Department, College of Agriculture, University of Duhok, Iraq Corresponding author: Email: smsadeq@uod.ac

ABSTRACT

صديق

This experiment was aimed to investigate the efficacy of MiaClost (Bacillus subtillis PB6 and Enterococuss faecium) as an alternative to antibiotic (zinc bacitracin) on performance and gut health of broiler chickens under Escherichai coli (E. coli) challenge model. A feeding study was conducted using 240-day-old Ross 308 chicks that were randomly assigned to 5 treatments each with 4 replicates and reared in two different rooms. Four treatments including (positive control, antibiotic, MiaClost 1 and MiaClost 2) were challenged with E. coli and reared in room1, however the fifth treatment was used as Negative control (nonchallenged) and reared in the second room. Birds were challenged with E. coli at day 8 and 9 of age. On days 24 and day 35 of birds age, the live body weight was lower (P < P0.01) and feed conversion ratio was higher (P < 0.01) in positive control birds than that of other experimental groups. Both levels of MiaClost significantly increased live body weight over other treatments. Birds in negative control, antibiotic, MiaClost 1 and MiaClost 2 increased villus height (P > 0.03) and increased villus height/ crypt depth ratio (P > 0.04) in compare to positive control. Furthermore, the serum concentration of alanine transaminase (ALT) was significantly lower (P < P0.001) in negative control and MiaClost 2 supplemented birds compared to positive control, antibiotic and MiaClost 1. The highest concentration of glucose was observed in the serum of positive control. In this study the MiaClost was as effective as antibiotic in preventing the expression of the negative impacts of E. coli on the performance and gut health of broiler chickens. This study indicates that MiaClost has promise as a tool for controlling E. coli in broiler production.

Key words: Broiler chicken, gut morphology, E. Coli, challenge

مجلة العلوم الزراعية العراقية -2019: 2016(2):504-514

المستخلص

اجريت هذه التجرية لدراسة تأثير المعزز الحيوي (مياكلوست) كبديل للمضاد الحيوي على الاداء الانتاجي و الصفات النسيجية لامعاء فروج اللم المعرضة لبكتريا الايكولاي. مجموع مائتان و أربعون من دجاج فروج اللحم بعمر يوم واحد استخدمت في هذه التجرية ووزعت بشكل عشوائي على خمس معاملات مع ٤ مكررات لكل معاملة في غرفتين. معاملة السيطرة الموجبة و المضاد الحيوي و مستويان من المعزز الحيوي (مياكلوست) استخدمت على الدجاج المعرض للايكولاي في نفس الغرفة أما المعاملة السيطرة الموجبة و المضاد الحيوي و مستويان من المعزز الحيوي (مياكلوست) استخدمت على اليوم الثامن و التاسع من العمر. اثبتت النتائج ان وزن الجسم كان معنويا الأقل وكفائة التحويل الغذائي كانت الأعلى (الاسوأ) في دجاج معاملة السيطرة الموجبة مقارنة مع بقية المعاملات في اليوم ٢٤ و ٣٥ من العمر . وزن الجسم كان الأعلى في الدجاج التي غذيت على المعزز الموجبة مقارنة مع بقية المعاملات في اليوم ٢٤ و ٣٥ من العمر . وزن الجسم كان الأعلى في الدجاج التي غذيت على المعزز باقي المعاملات. طول الزغابات و كذلك نسبة الزغابات الى عمق الخبايا كانت معنويا الأقل في معاملة السيطرة الموجبة مقارنة مع باقي المعاملات. طول الزغابات و كذلك نسبة الزغابات الى عمق الخبايا كانت معنويا الأل في معاملة السيطرة الموجبة معارفة مع المعاملات. الأخرى. ايضا مستوى إنزيم الالانين ترانسفيرين كان الأقل في معاملة السيطرة السالبة و المستوى الأعلى من المعزز الحيوي معارفة مع المعاملات. الأخرى. اين مستوى الكلوكوز كان الأعلى في مصل دم طيور معاملة السيطرة الموجبة. المعزز الحيوي المعاد الم المعاملات الأخرى. ايضا مستوى الكلوكوز كان الأعلى في مصل دم طيور معاملة السيطرة الموجبة. المعزز الحيوي المثان الم المعاملات الأخرى. ايضا مستوى الكلوكوز كان الأعلى في مصل دم طيور معاملة السيطرة الموجبة. المعزز الحيوي المثال المضاد المعاملات الأخرى . ايضا مستوى الكلوكوز كان الأعلى في مصل دم طيور معاملة السيطرة الموجبة. المعزز الحيوي (ماكم من استخدام المعزز الحيوي (مياكلوست) كمضاد للايكولاي في انتاج الدوبان

كلمات مفتاحية: المضاد الحيوى ، المعزز الحيوى، السيطرة السالبة، الزغابات.

*Received:11/9/2018, Accepted:28/2/2019

INTRODUCTION

Enteric diseases are one of the most important illnesses in the poultry industry because of high economic losses due to decreased weight increased mortality gain, rates. feed conversion ratio and medication costs (15). Avian colibacillosis caused by Escherichai coli (E. coli), consequences in significant economic losses every year in the global poultry production as a result of its high mortality and morbidity rates(4, 12). E. coli characterized by varied array of lesions, including perihepatitis, air sacculitis, and pericarditis lesions(20). Recent studies have also shown that E. Coli cause gastroenteritis and diarrhea in young animal and could impair intestine including inflammatory response (3, 17. 18). То control enteric infection. Antibiotics have been used as an effective tool to improve animal performance, by selectively modifying the gut microflora, decreasing bacterial fermentation, reducing thickness of the intestinal wall and suppressing bacterial catabolism and also control enteric disease outbreak(10). Although different antibiotics have been used to control and prevent the colibacillosis, the emergency of antibiotic bacteria decreased resistant have the antibiotics effectiveness and may pose a human health hazard(1, 2). In addition, drug resistance of E. Coli has increased resistance genes such as plasmid -mediated Amp-C betalactamases (Amp-C) and/or extendedspectrum beta-lactamases (ESBL) (13). Thus, new methods for controlling E. coli must be investigated to improve gut health or reduce the severity of E. coli. Probiotics as a natural alternative to infeed-antibiotics have received much attention duet to their antimicrobial activities in gastrointestinal of poultry. The modes of action of probiotics include maintaining gut microflora by competitive exclusion, stimulating the immune system, metabolism altering through increased digestive enzyme activity, ammonia decreasing production bacterial enzyme activity (5, 21, 26, 29). The mechanisms of competitive exclusion of pathogens include mucosal and binding sites nutrients competition, or SCFAs production and low pH, which are bactericidal or bacteriostatic for pathogenic bacteria (19). Several studies

demonstrated that different kinds of probiotics may have effect on specific pathogens. Bacillus subtilis PB6 improved body weight, increased concentration FCR and of lactobacillus spp in broiler chickens infected with a pathogenic strain of E. coli (28) and also gut health and gut integrity by increasing the villus height and villus height to crypt depth ratio and controlled induced necrotic enteritis in broiler chickens (7). Cao (4) reported that Enterococuss faecium, as lactic acid bacterium, improved growth performance, intestinal morphology and usefully manipulate the cecal microbiome in broiler chickens challenged with E. Coli K88. Thus, the present study was designed to investigate the effect of probiotics (Enterococuss faecium and Bacillus subtilis PB6) on the performance, gut morphology, lymphoid organs weight, serum biochemical and nutrients digestibility of broiler chickens challenged with E. coli isolated from local commercial farms.

MATERIALS AND METHODS

The experiment was approved by the Animal production department scientific committee of college of agriculture, University of Duhok.

Animal husbandry

A total of 240 d-old Ross 308 chicks were placed in 20 floor pens in the University of Duhok, college of agriculture, Animal House Complex. All the birds were vaccinated against Newcastle disease and infectious bronchitis. These birds randomly were assigned to 5 treatments with four replicate pens per treatment and 12 birds in each pen. Pens (wire mesh partitioned at 100×100 cm) were assigned into two partitions to prevent Negative control birds from infection of E. Coli in the same environmentally controlled facility. The room temperature was set at 33-34°C initially and gradually decreased by 3°C per week until 22-24°C was reached by the third week. Birds were subjected to artificial fluorescent illumination light of 23 hours between d 0-7, then 18 hours from d 8 to 30, and 23 hours from d 30 to 35. Each pen was equipped with a separate tube feeder and nipple drinkers with water and feed provided ad libitum. During the trial period, starter diets were fed during d 0-10, grower diets between d 10-24, and finisher diets between d 24-35. The primary determinants of performance, i.e., cumulative pen weight, feed intake (FI) and feed conversion ratio (FCR) were measured at day 10, 24 and 35.

Dietary treatment

Three diets were formulated according to Ross 308 nutrient specifications (Table 1). Treatments were negative control (no challenge and no additive), Positive control (challenged and no additive), antibiotic (challenged and control diet supplemented with antibiotics 0.33 g/kg zinc bacitracin in starter, grower and finisher diets), MiaClost 1 (challenged and control diet supplemented with 0.2 g/kg MiaClost in starter, grower and finisher diets), and MiaClost 2 (challenged and control diet supplemented with 0.4 g/kg MiaClost in starter, grower and finisher diets). MiaClost (Probiotic) contains 50000x10⁷ CFU/Kg Bacillus subtillis PB6 and 1500x 10⁹ CFU/Kg Enterococuss faecium.

E. Coli challenge

The *E. Coli* used in this study was isolated in our laboratory from local commercial farms. *E. Coli* was incubated overnight at 37° C in 100 mL of sterile MacConkey broth followed by subsequent overnight incubations of 0.1 mL of the previous broth in Eosin methylene blue agar (EMB) for colony counting. A colony from EMB inculcated to 1000 mL of MacConkey broth to obtain the challenge inoculum. On days 8 and 9, challenged birds were inoculated with 1.5 ml *E. Coli* suspension (3.8×10^{8} CFU/mL).

Sample collection

On d 14 and 24, two birds and one bird, respectively, were randomly selected from each pen, weighed, and euthanized by cervical dislocation. Digesta samples from the ileum and caeca were collected. Around 1 g of content was used to measure the pH. Approximately 1 g of cecal digest was collected in a 2mL Eppendorf tube, stored at - $20^{\circ}C$ for bacteria quantification. Approximately 1 cm of the illume from one bird in each pen was collected for morphometric analysis. The tissue was opened and flushed clean with phosphate buffered

saline (PBS, pH 7.4) and fixed in 10% buffered formalin for 24 hours. Formalin was subsequently replaced by 70% ethanol for long-term storage.

Measurements and analysis Ileal and Cecal Ph

The ileal and cecal pH values were measured at d 14 and 24. Approximately 1 g of contents was diluted in 9 mL of distilled water. The suspension was mixed with a stirrer and the pH was determined by the EcoScan 5/6 pH meter (Eutech Instrument Pty Ltd., Singapore). **Histology**

Fixed samples were dehydrated, cleared and embedded in paraffin wax for subsequent histological analysis. Consecutive longitudinal sections (7 µm) were placed individually onto Superfrost[®] slides (Thermo Scientific, Rockville, MD, USA) and stained with hematoxylin and eosin. Villus height and crypt depth were measured by the Dino-eye program and the images captured with a color video camera (Dino-eye 20). The height of 10 villi. depth of 10 crypts and thickness of 10 muscles were measured from each replicate. The means were obtained from villus height and crypt depth, the villus height/crypt depth ratio (VH:VD) was determined.

Serum biochemical

At day 24 of age, blood samples were collected from the jugular vein and serum was separated for determination of glucose, creatinine, total protein, albumin, cholesterol, triglyceride, alanine transaminase (ALT) and aminotransferase aspartate (AST). For individual serum sample determination, an analyzer (TOKYO automatic BOEKI MEDICAL SYSTEM), and using commercial kits (prestige 24i LQ CHOL and Glucose (COD-PAP)).

Statistical analysis

The SAS statistical package (PROC GLM) was used to determine significance of main effects (SAS, 2013). Duncan's multiple range test was used to detect the differences between individual treatment means.

Ingredients	Starter	Grower	Finisher
Corn	47	49.9	51.5
Wheat	5	5	5
Wheat bran	5	3	5
Soybean meal	37	34	30
Vegetable oil	1.5	3.4	4.5
Limestone	1.8	1.7	1
Dicalcium phosphate	0.7	0.5	0.5
Salt	0.05	0.01	0.05
Vitamin premix	2.5	2.5	2.5
Nutrient composition %			
ME (kcal/kg)	2878	3035	3116
Crude protein	22.86	21.33	19.58
Crude fiber	3.02	2.76	2.92
Fat	3.76	5.64	6.80
Linoleic acid	1.92	2.88	3.48
Lysin	1.58	1.47	1.37
Methionine	0.66	0.64	0.63
Tryptophan	0.37	0.36	0.34
Methionine + cystine	1.05	1.01	0.96
Threonine	0.97	0.92	0.86
Arginine	1.59	1.5	1.37
Calcium	1.08	0.99	0.73
Phosphor	0.54	0.5	0.49
Sodium	0.19	0.18	0.19
Chloride	0.26	0.24	0.26

Table1. Ingredient and composition of the basal starter, grower and finisher diets as percentage.

RESULTS AND DISCUSSION

Broiler performance: Performance results are present in table 2. At day 10, broiler chickens fed MiaClost 1 and 2 had higher live body weight (P < 0.003) compared to negative control, positive control and antibiotic. Although inclusion of antibiotic, MiaClost 1 and 2 increased feed intakes over negative and positive control (P < 0.0001), no significant different detected among experimental treatments for FCR. At days 24 and 35, the effect of the challenge was clearly visible. The live boy weight and FCR of positive control birds were significantly poorer than negative control, antibiotic, MiaClost 1 and 2. Feed conversion ratio and live body weight of the birds supplemented with MiaClost 1 and 2 were not different from negative control. In the birds given antibiotic, the feed intake was significantly increased over all dietarv treatments at days. However, birds fed antibiotics had significantly higher live body weigh compared with negative control at day 35.

Organs percentage

Organs percentage from live body weight were measured at day 14 and 24 in birds fed treatment diets (Table 3). There were no significant differences of liver, bursa, spleen, and pancreas percentage between birds fed different experimental diets at days 14 and 24.

Ileum and caeca pH

The effects of different levels of MiaClost on ileal and cecal pH are summarized in table 4. At days 14 and 24, no significant differences were observed in ileum and caeca digesta pH of birds fed different levels of MiaClost.

Gut morphology

The morphology of jejunal samples was studied after *E. Coli* challenge and the data are presented in Tables 5. At day 24, the effect of the challenge was clearly visible. The negative control, antibiotic, MiaClost1 and MiaClost 2 birds had higher villus height (P < 0.03) and villi/crypt ratio (P < 0.04) than positive control birds. The muscle thickness of positive control was numerically higher overall treatments.

Serum biochemical parameters

The effect of treatments on the serum biochemical parameters in broiler at day 24 are presented in table 6. The result revealed that serum glucose of positive control birds increased (P < 0.03) over negative control, antibiotic, MiaClost 1 and MiaClost 2. The results of serum biochemical parameters at day 24 showed that total protein concentration decreased significantly in MiaClost 1 and MiaClost 2. Serum Albumin in negative control. MiaClost 1 and MiaClost 2 significantly reduced compared to positive control and antibiotic. The result showed that ALT concentrations in negative control and MiaClost 2 were lower (P < 0.001) than

positive control, antibiotic and MiaClost 1. However, no significant changes (P > 0.05) were observed in cholesterol, triglyceride and AST concentrations between treated groups

Period	Negative	Positive	Antibiotic	MiaClost1	MiaClost2	P-value	Pooled
	control	control					SEM
Live body w	eight (g/bird)						
0-10d	252 ^b	258 ^b	264 ^b	289^a	290^a	0.003	4.56
0-24d	1073 ^a	925 ^b	1123 ^a	1039 ^a	1082 ^a	0.009	5.05
0-35d	1910^b	1755 ^c	2159^a	1980 ^{ab}	2024 ^{ab}	0.001	0.01
Feed intake	(g/bird)						
0-10d	242 ^b	251 ^b	275^{a}	291 ^a	289^a	0.0001	20.32
0-24d	1401 ^b	1352 ^b	1505 ^a	1407^{b}	1404 ^b	0.01	15.46
0-35d	2792 ^b	2768 ^b	3119 ^a	2834 ^b	2854 ^b	0.030	0.02
Feed conver	rsion ratio (FCR)						
0-10d	1.14	1.16	1.22	1.18	1.16	0.24	40.31
0-24d	1.36 ^b	1.56 ^a	1.39 ^b	1.41 ^b	1.35 ^b	0.01	41.56
0-35d	1.46 ^b	1.58 ^a	1.45 ^b	1.44 ^b	1.41 ^b	0.01	0.02

 $^{a, b, c}$ means in rows with different superscripts are significantly different (P< 0.05).

 Table 3. Effect of treatments on organs percentage from live body weight of birds in different experimental treatments

Treatments	Negative control	Positive control	Antibiotic	MiaClost1	MiaClost2	P-value	Pooled SEM
Day 14							
Liver %	3.69	3.47	4.14	3.28	3.83	0.61	0.17
Gizzard %	5.71	5.64	5.5	5.26	5.97	0.30	0.10
Bursa %	0.21	0.21	0.18	0.22	0.19	0.48	0.007
Spleen %	0.07	0.09	0.09	0.09	0.07	0.51	0.004
Pancreas %	0.52	0.52	0.57	0.50	0.50	0.70	0.017
Day 24							
Liver %	2.54	2.78	3.57	3.14	2.81	0.15	0.14
Gizzard %	3.42	3.78	3.89	3.39	3.46	0.37	0.098
Bursa %	0.20	0.19	0.21	0.2	0.21	0.98	0.009
Spleen %	0.07	0.09	0.12	0.09	0.11	0.15	0.007
Pancreas %	0.36	0.33	0.29	0.33	0.35	0.22	0.01

Table 4. Effect of treatments on illeal and caecal digesta pH in birds fed dietary treatments

				0		•	
Treatments	Negative control	Positive control	Antibiotic	MiaClost1	MiaClost2	P-value	Pooled SEM
Day 14							
Illum	6.07	6.93	6.49	6.44	6.39	0.09	0.1
Caeca	6.59	6.28	6.3	6.78	6.75	0.28	0.09
Day 24							
Illum	6.26	6.15	6.35	6.48	5.89	0.34	0.09
Caeca	7.54	7.85	7.49	7.93	7.93	0.26	0.13
	100 / 007						

Table 5. Effect of treatments on jejunal muscle thickness, villus height and crypt depth at day

			24				
Treatments	Negative	Positive	Antibiotic	MiaClost1	MiaClost2	P-value	Pooled
	control	control					SEM
Villus height um	1244 ^a	1052 ^b	1316 ^a	1320 ^a	1302 ^a	0.03	34
Crypt depth um	224	268	241	222	235	0.53	8.94
Villi/crypt ratio	5.55 ^a	4.04^b	5.53 ^a	6.05 ^a	5.55 ^a	0.04	0.23
Muscle	209	237	2016	209	212	0.15	7.17
thickness um							

^{a, b} means in rows with different superscripts are significantly different (P < 0.05).

Treatments	Negative control	Positive control	Antibiotic	MiaClost1	MiaClost2	P-value	Pooled SEM
Glucose (mg/dl)	239 ^b	335 ^a	290 ^b	247 ^b	254 ^b	0.03	12.07
Creatinine (g/dl)	0.16	0.19	0.18	0.14	0.16	0.88	0.017
Total protein(g/dl)	3.04 ^a	3.29 ^a	3.37 ^a	2.32 ^b	2.41 ^b	0.01	0.129
Albumin(g/dl)	1.61 ^a	1.85 ^a	1.86 ^a	1.28^b	1.35 ^b	0.004	0.086
Cholesterol(m g/dl)	116	169	150	104	111	0.18	10.12
Triglyceride(mg/dl)	72	79	89	62	71	0.86	7.25
AST (U/L)	229	283	247	200	197	0.16	12.56
ALT(U/L)	2 ^b	6 ^a	5.5 ^a	4.9 ^a	2.5 ^b	0.001	0.43

health.

Bacillus

tracts disorder (6, 7).

subtillis

Enterococuss faecium are natural strains found

in the intestine of healthy chicken gut which

have positive improvement on performance,

intestinal morphology, enhancing the humoral

immune response and preventing intestinal

showed that MiaClost increased villi height /

crypt ratios, showing a long, matured and

functionally active villus, in company with a

thin crypt with constant renewal of cells.

Bacillus subtillis PB6 and Enterococuss

faecium increases the concentration of Short

chain of fatty acids (SCFAs) and bacteriocin

(14). It has been reported that SCFA stimulate

gastrointestinal cell proliferation through the

increase of plasma glucagon-like peptide-2

(GLP-2) and ileal proglucagon, glucose transporter (GLUT2) expression and protein

expression. Intestinal morphology reflects the

integrity and health of the digestive tract.

Pathogens or toxin can damage the gut. E. coli

challenge disturb intestinal morphology (4, 6,

30). Similarly, current study showed that the

birds in challenged control (positive control)

PB6

The current results

and

been

^{a, b} means in rows with different superscripts are significantly different (P < 0.05).

ALT= alanine transaminase, and AST = aspartate aminotransferase (AST). due to the beneficial effect of MiaClost on gut

It is well known that gut microflora of chickens has wide metabolic potential. It affects the host health and nutrition. Amplified counts of some pathogen bacteria, such as E. Coli, may negatively affect broiler chickens body weight, feed intake, feed conversion ratio, nutrients absorption and gut health which it is an indicator for digestion and intestinal integrity. Supplementation of probiotics can be promising strategies for preventing and treating E. Coli infection. Probiotics are becoming popular worldwide because of its growth promoting, improve morphology, and intestinal beneficially manipulate gut microflora in broiler chickens (4). E. coli is a gram-negative bacterium and its pathogenic element is lipopolysaccharides, which can cause inflammation. Limitation of muscle protein and mobilizes energy synthesis to support the immune by inflammation resulting in poor growth (27). Evidence has been presented that probiotic improve growth performance. The results of current study demonstrate that MiaClost (Bacillus subtillis PB6 and Enterococuss faecium) was effective in curbing performance decline, live body weight and FCR, as antibiotic in birds challenged with E. coli. This is in agreement with findings of other researchers (4, 6) who reported that the addition of E. Faecium in broiler diets had positive effect on growth performance of broiler chickens after E. coil challenge. Teo and Tan (28) reported that adding Bacillus subtillis PB6 to the broiler chickens' diet improved FCR and body weight under E. coli challenge condition. The improved body weight and FCR are probably

decreased villus height and villi/crypt ratio. Furthermore, several studies have conducted on the effect of probiotics on gut morphology. Dietary supplementation of E. faecium in broiler chickens diet efficiently improved the intestinal mucosal architecture by increasing villus height and villi / crypt ratio (24). E. faecium can inhabit the adhesion of *E.coli* through altering steric hindrance (9). It has been confirmed that the addition of E. faecium (4, 6) and Bacillus subtills (16)in broiler chickens diet improved intestinal histomorphology with an increased villus height and villus/ crypt ratio under E. coli challenge. Consistently, our results showed that the MiaClost was effective as antibiotics in maintaining the gut morphology integrity by increasing villus height and villus/crypt ratio after E coli challenge and MiaClost villus height and villus/crypt ratio were not different than unchallenged control (negative control). The present study showed that E. coli challenge significantly affected the birds' serum biochemical parameters such as glucose and ALT. Similar significant increase in serum ALT activities have been reported by other workers in E. coli infection in broiler (11, 22) Elevation of serum ALT is mostly due to hepatic injuries (25). However greater liver enzymes (ALT) reduction were detected associated with a greater improvement in liver enzymes by supplementing MiaClost group when compared with positive control and antibiotics groups. Similarly, Rishi (23), found that probiotic supplementation resulted in decreased bacterial translocation in the liver of mice challenged with Salmonella typhimurium decreased levels of serum and aminotransferases, suggesting the protection role against Salmonella infection. Also, the present study showed that positive control had higher serum glucose compared to negative control. The increased serum glucose may be due to E coli infection. During infection stress, epinephrine (adrenaline), glucagon, growth hormone and cortisol play a role in blood sugar levels, which trigger release of glucose to ensuring that enough sugar or energy is Glucan and epinephrine readily available. levels increase and Insulin level decreases then more glucose is released from the liver. At the same time, cortisol and growth hormone rise, which causes body tissues to be less sensitive to insulin (8). This study was successful in demonstrating the E. coli challenge model. It showed that MiaClost was as effective as antibiotic in controlling performance including live body weight and feed conversion ratio. And improving gut integrity by increasing VH and VH:CD ratio in E. coli challenged broiler chickens. These results indicate that MiaClost can act as a replacement for antibiotic for controlling E coli infection.

REFERENCES

1. Asai, T, K Masani, C Sato, M Hiki, M Usui, K Baba, M Ozawa, K Harada, H Aoki, and T Sawada. 2011 .Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Veterinaria Scandinavica, 53(1): 52

2. Bélanger, L, A Garenaux, J Harel, M Boulianne, E Nadeau, and C M Dozois. 2011. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunology & Medical Microbiology, 62(1): 1-10

3. Berberov, E M, Y Zhou, D H Francis, M A Scott, S D Kachman, and R A Moxley. 2004 . Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infection and immunity, 72(7): 3914-3924

4. Cao, G, X Zeng, A Chen, L Zhou, L Zhang, Y Xiao, and C Yang. 2013 . Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poultry Science, 92(11): 2949-2955

5. Collins, M D and G R Gibson. 1999 Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. The American journal of clinical nutrition, 69(5): 1052s-1057s

6. Huang, L, L Luo, Y Zhang, Z Wang, and Z Xia. 2018 . Effects of the Dietary Probiotic, Enterococcus faecium NCIMB11181, on the Intestinal Barrier and System Immune Status in Escherichia coli O78-Challenged Broiler Chickens. Probiotics and Antimicrobial Proteins: 1-11

7. Jayaraman, S, G Thangavel, H Kurian, R Mani, R Mukkalil, and H Chirakkal. 2013 .Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry science, 92(2): 370-374

8. Jianwei, S, Y Hanwen, S Jie, C Jundan, Z Xiaojun, and W Yun. 2018 . Influence of blood glucose level on incidence of pulmonary infection and prognosis in patients with diabetes mellitus complicated with severe cerebral infarction. Biomedical Research, 28(22): 10154-10158

9. Jin, L, R Marquardt, and X Zhao. 2000.A strain of Enterococcus faecium (18C23) inhibits adhesion of enterotoxigenic Escherichia coli K88 to porcine small intestine mucus. Applied and environmental microbiology, 66(10): 4200-4204

10. Kim, G B, Y M Seo, C H Kim, and I K Paik. 2011.Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Science, 90(1): 75-82

11.Kumari, M, R Gupta, and R Sharma. 2014.Biochemical and immunological response of Ocimum sanctum in chickens experimentally infected with Escherichia coli. Indian Journal of Veterinary Pathology, 38(2): 98-102

12.Lau, G, C Sieo, W Tan, M Hair-Bejo, A Jalila, and Y Ho. 2010 . Efficacy of a bacteriophage isolated from chickens as a therapeutic agent for colibacillosis in broiler chickens. Poultry science, 89(12): 2589-2596

13.Laube, H, A Friese, C Von Salviati, B Guerra, A Käsbohrer, L Kreienbrock, and U Roesler. 2013. Longitudinal monitoring of Esbl/Ampc-Producing Escherichia coli in German broiler chicken fattening farms. Applied and environmental microbiology: AEM. 00856-13

14.Levkut, M, V Revajová, A Lauková, Z Ševčíková, V Spišáková, Z Faixová, M Levkutová, V Strompfová, J Pistl, and M 2012. Leukocytic responses and Levkut. intestinal mucin dynamics of broilers protected faecium **EF55** Enterococcus and with challenged with Salmonella Enteritidis. Research in veterinary science, 93(1): 195-201

15.M'Sadeq, S A, S-B Wu, R A Swick, and M Choct. 2015. Dietary acylated starch improves performance and gut health in necrotic enteritis challenged broilers. Poultry science, 94(10): 2434-2444

16.Manafi, M, S Khalaji, M Hedayati, and N Pirany. 2016. Efficacy of Bacillus subtilis and bacitracin methylene disalicylate on growth performance, digestibility, blood metabolites, immunity, and intestinal microbiota after intramuscular inoculation with Escherichia coli in broilers. Poultry science, 96(5): 1174-1183

17.McLamb, B L, A J Gibson, E L Overman, C Stahl, and A J Moeser. 2013 . Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS One, 8(4): e59838

18.Nagy, B and P Z Fekete. 2005. Enterotoxigenic Escherichia coli in veterinary medicine. International Journal of Medical Microbiology, 295(6-7): 443-454

19.Ohland, C L and W K MacNaughton. 2010 Probiotic bacteria and intestinal epithelial barrier function. American journal of physiology. Gastrointestinal and liver physiology, 298(6): G807-G819

20.Ozaki, H, Y Matsuoka, E Nakagawa, and T Murase. 2017. Characteristics of Escherichia coli isolated from broiler chickens with colibacillosis in commercial farms from a common hatchery. Poultry science, 96(10): 3717-3724

21.Patterson, J A and K M Burkholder. 2003. Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4): 627-631

22.Petrov, V, M Lyutskanov, and D Kanakov. 2011. Effects of spontaneous and experimental colibacteriosis on some haematological and blood biochemical parameters in weaned rabbits. Bulgarian Journal of Veterinary Medicine, 14(4).

23.Rishi, P, S K Mavi, S Bharrhan, G Shukla, and R Tewari. 2009. Protective efficacy of probiotic alone or in conjunction with a prebiotic in Salmonella-induced liver damage. FEMS microbiology ecology, 69(2): 222-230

24.Samli, H, S Dezcan, F Koc, M Ozduven, A A Okur, and N Senkoylu. 2010. Effects of Enterococcus faecium supplementation and floor type on performance, morphology of erythrocytes and intestinal microbiota in broiler chickens. British poultry science, 51(4): 564-568

25.Sharma, V, K Jakhar, V Nehra, and S Kumar. 2015. Biochemical studies in experimentally Escherichia coli infected broiler chicken supplemented with neem (Azadirachta indica) leaf extract. Veterinary world, 8(11): 1340 26.Simmering, R and M Blaut. 2001. Pro-and prebiotics-the tasty guardian angels. Applied Microbiology and Biotechnology, 55(1): 19-28

27.Tan, J, S Liu, Y Guo, T J Applegate, and S D Eicher. 2014. Dietary L-arginine supplementation attenuates lipopolysaccharide-induced inflammatory response in broiler chickens. British Journal of Nutrition, 111(8): 1394-1404

28.Teo, A-L and H-M Tan. 2006 . Effect of Bacillus subtilis PB6 (CloSTAT) on broilers infected with a pathogenic strain of Escherichia coli. Journal of applied poultry research, 15(2): 229-235

29.Walker, W A and L C Duffy. 1998. Diet and bacterial colonization: role of probiotics and prebiotics. The Journal of Nutritional Biochemistry, 9(12): 668-675

30.Zhang, L, L Zhang, X Zeng, L Zhou, G Cao, and C Yang. 2016. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. Journal of animal science and biotechnology, 7(1): 3.